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Initial-Value Problems for Ordinary Differential Equations 

The Elementary Theory of Initial-Value Problems 

Differential equations are used to model problems in science and engineering that 

involve the change of some variable with respect to another. Most of these problems 

require the solution of an initial-value problem, that is, the solution to a differential 

equation that satisfies a given initial condition. 

In common real-life situations, the differential equation that models the problem is too 

complicated to solve exactly, and one of two approaches is taken to approximate the 

solution. The first approach is to modify the problem by simplifying the differential 

equation to one that can be solved exactly and then use the solution of the simplified 

equation to approximate the solution to the original problem. The other approach, 

which we will examine in this chapter, uses methods for approximating the solution of 

the original problem. This is the approach that is most commonly taken because the 

approximation methods give more accurate results and realistic error information. 

The methods that we consider in this chapter do not produce a continuous 

approximation to the solution of the initial-value problem. Rather, approximations are 

found at certain specified, and often equally spaced, points. Some method of 

interpolation, commonly Hermite, is used if intermediate values are needed. 

We need some definitions and results from the theory of ordinary differential equations 

before considering methods for approximating the solutions to initial-value problems. 

 

Definition (1): 

A function 𝑓 (𝑥, 𝑦)is said to satisfy a Lipschitz condition in the variable y on a set 

𝐷 ⊂ ℝ2 if a constant L > 0 exists with 

 |𝑓 (𝑥, 𝑦1)  −  𝑓 (𝑥, 𝑦2)|  ≤  𝐿| 𝑦1  −  𝑦2|,  Whenever (𝑥, 𝑦1)and (𝑥, 𝑦2)are in D. The 

constant L is called a Lipschitz constant for f. 

 

Example 1  

Show that 𝑓 (𝑥, y) = 𝑥|𝑦| satisfies a Lipschitz condition on the interval  

𝐷 =  {(𝑥, 𝑦) | 1 ≤  𝑥 ≤ 2 and −  3 ≤  𝑦 ≤  4}  
Solution  

For each pair of points (𝑥, 𝑦1)and (𝑥, 𝑦2) in D we have 

 

|𝑓 (𝑥, 𝑦1) −  𝑓 (𝑥, 𝑦2)| = |𝑥|𝑦1| − 𝑥|𝑦2|| = |𝑥|||𝑦1| − |𝑦2|| ≤ 2 |𝑦1 − 𝑦2| 
 

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. 

The smallest value possible for the Lipschitz constant for this problem is L = 2, 

because, for example,  

 |f (2, 1) − f (2, 0)| = |2 − 0| = 2|1 − 0|. 

 

Definition (2):  

A set 𝐷 ⊂ ℝ2  is said to be convex if whenever (𝑥1, 𝑦1) and(𝑥2, 𝑦2)  belong to D, then 

((1 − 𝜆)𝑥1 + 𝜆𝑥2, (1 − 𝜆)𝑦1 + 𝜆𝑦2)also belongs to D for every λ in [0, 1]. 

In geometric terms, Definition (2) states that a set is convex provided that whenever 
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two points belong to the set, the entire straight-line segment between the points also 

belongs to the set. The sets we consider in this chapter are generally of the form 

𝐷 = {(𝑡, 𝑦) | 𝑎  𝑥 ≤  𝑏 and − ∞ < 𝑦  ∞} for some constants a and b. It is easy to 

verify that these sets are convex. 

 

Theorem (1):  

Suppose 𝑓 (𝑥, 𝑦) is defined on a convex set 𝐷 ⊂ ℝ2. If a constant L > 0 exists with  
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
≤ 𝐿 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥, 𝑦) ∈ 𝐷 

Then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L. 

 

As the next theorem will show, it is often of significant interest to determine whether 

the function involved in an initial-value problem satisfies a Lipschitz condition in its 

second variable, and condition (1) is generally easier to apply than the definition. We 

should note, however, that Theorem (1) gives only sufficient conditions for a Lipschitz 

condition to hold. The function in Example 1, for instance, satisfies a Lipschitz 

condition, but the partial derivative with respect to y does not exist when y = 0. 

The following theorem is a version of the fundamental existence and uniqueness 

theorem for first-order ordinary differential equations. Although the theorem can be 

proved with the hypothesis reduced somewhat, this form of the theorem is sufficient 

for our purposes. 

 

Theorem (2):  

Suppose that 𝐷 = {(𝑥, 𝑦) | 𝑎 ≤ 𝑥 ≤  𝑏 and − ∞ < 𝑦 < ∞} and that 𝑓(𝑥, 𝑦) is 

continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the 

initial-value problem 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼 

has a unique solution 𝑦(𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏. 

 

Example 2  

Use Theorem (2) to show that there is a unique solution to the initial-value problem 

𝑦′ = 1 + 𝑥 𝑠𝑖𝑛𝑥𝑦, 0 ≤ 𝑥 ≤ 2, 𝑦(0) = 0 

Solution 

Holding x constant and applying the Mean Value Theorem to the function 

 𝑓(𝑥, 𝑦) = 1 + 𝑥 𝑠𝑖𝑛𝑥𝑦 

We find that when 𝑦1  <  𝑦2, a number ξ in (𝑦1, 𝑦2),  exists with 

 
𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)

𝑦1 − 𝑦2
=
𝜕𝑓(𝑥, 𝜉)

𝜕𝑦
= 𝑥2𝑐𝑜𝑠𝜉𝑥 

Thus 

|𝑦1 − 𝑦2| = |𝑦1 − 𝑦2||𝑥
2𝑐𝑜𝑠𝜉𝑥| ≤ 4|𝑦1 − 𝑦2| 

and f satisfies a Lipschitz condition in the variable y with Lipschitz constant L = 4. 

Additionally, 𝑓(𝑥, 𝑦) is continuous when 0 ≤ x ≤ 2 and −∞ < y < ∞, so Theorem (2) 

implies that a unique solution exists to this initial-value problem. 
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EXERCISE (1) 

(1) Use theorem (2) to show that each of the following initial-value problems has a 

unique solution, and find the solution. 
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(c)   

(d)  
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(2) Picard’s method for solving the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤  𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
is described as follows:  

Let 𝑦0(𝑥)  =  𝛼 for each x in [a, b].  

Define a sequence {𝑦𝑘(𝑥)} of functions by  

𝑦𝑘(𝑥)  =  𝛼 + ∫ 𝑓(𝜏, 𝑦𝑘−1(𝜏 )) 𝑑𝜏
𝑥

𝛼

 , 𝑘 =  1, 2, . . .. 

(a) Integrate 𝑦′ =  𝑓 (𝑥, 𝑦), and use the initial condition to derive Picard’s 

method. 

(b) Generate  𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥)𝑎𝑛𝑑 𝑦3(𝑥) for the initial-value problem 

          𝑦′ =  −𝑦 +  𝑥 +  1, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  1. 

(c) Compare the result in part (b) to the Maclaurin series of the actual solution  

        𝑦(𝑥)  =  𝑥 + 𝑒−𝑥 . 
  

Euler’s Method 

Euler’s method is the most elementary approximation technique for solving initial-

value problems. Although it is seldom used in practice, the simplicity of its derivation 

can be used to illustrate the techniques involved in the construction of some of the more 

advanced techniques, without the cumbersome algebra that accompanies these 

constructions. The object of Euler’s method is to obtain approximations to the well-

posed initial-value problem 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦(𝑎) = 𝛼                          (1) 
 

A continuous approximation to the solution y(x) will not be obtained; instead, 

approximations to y will be generated at various values, called mesh points, in the 

interval [a, b]. 

Once the approximate solution is obtained at the points, the approximate solution at 

other points in the interval can be found by interpolation. 

We first make the stipulation that the mesh points are equally distributed throughout 

the interval [a, b]. This condition is ensured by choosing a positive integer N and 

selecting the mesh points 
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   𝑥𝑘 = 𝑎 + 𝑘ℎ,   for each  𝑘 = 0, 1, 2, 3, … ,𝑁 

The common distance between the points ℎ =
𝑏−𝑎

𝑁
= 𝑥𝑘+1 − 𝑥𝑘 is called the step size. 

We will use Taylor’s Theorem to derive Euler’s method. Suppose that y(x), the unique 

solution to (1), has two continuous derivatives on [a, b], so that for each  
k       N0,1,2,3, , 1  

( )
( ) ( ) ( ) ( ) ( ) ( )

 


    
2

1
1 1 2

2
k k

k k k k k k
x x

y x y x x x y x y ξ  

For som number ( , ) 1k k kξ x x becouse  1k kh x x , we have 

( ) ( ) ( ) ( ) ( )    k k k k
h

y x y x h y x y ξ
2

1 3
2

  

and, because ( )y x satisfies the differential equation (1), 

( ) ( ) ( , ) ( ) ( )   k k k k k
h

y x y x h f x y y ξ
2

1 4
2

 

Euler’s method constructs 𝑤𝑘  ≈  𝑦(𝑥𝑘), for each k = 1, 2. . . N, by deleting the 

remainder term. Thus Euler’s method is 

,

, ,for each , ,..., . ( ))



   k k k k

w    α

w    w    h f(x w    k            N   

0

1 0 1 1 5
  

 

Illustration  

  Euler’s method to approximate the solution to 

𝑦′ =  𝑦 − 𝑥2 +  1, 0 ≤  𝑡 ≤  2, 𝑦(0)  =  0.5, 
at x = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5. 

For this problem𝑓 (𝑥, 𝑦)  =  𝑦 − 𝑥2  +  1, so 
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Equation (5) is called the difference equation associated with Euler’s method. As we 

will see later in this chapter, the theory and solution of difference equations parallel, in 

many ways, the theory and solution of differential equations. 
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Example 3 

 Euler’s method was used in the first illustration with h = 0.2 to approximate the 

solution to the initial-value problem 

𝑦′ =  𝑦 − 𝑥2 +  1, 0 ≤  𝑡 ≤  2,    𝑦(0)  =  0.5, 
with N = 10 to determine approximations, and compare these with the exact values 

given by ( ( .) )  21 0 5 xy x x e . 

Solution  

With N = 10 we have h = 0.2, . , . 00 2 0 5kx k y  , and 

. ( . )

. . .

for ,  ,. . .,  . So

. ( . ) . ( ) . .

. ( . ) . ( ) . .

( )

( )

    

   

  



   

   

2
1

2

2

2
1

2
2

1

0 2 0 2 1

1 2 0 008 0 2

0 1 9

1 2 0 5 0 008 0 0 2 0 8

1 2 0 8 0 008 1 0 2 1 152

k k k k

k k

k

w w h w x

w h w k

w k

k

w

w

 

 

and so on. Table (1)  shows the comparison between the approximate values at kx  

and the actual values 

 

k kx   ( )k ky y x   exact ky y   

0 0 0.5 0 
1 0.2 0.8 0.029298621 
2 0.4 1.152 0.062087651 
3 0.6 1.5504 0.0985406 
4 0.8 1.98848 0.138749536 
5 1 2.458176 0.182683086 
6 1.2 2.9498112 0.230130339 
7 1.4 3.45177344 0.280626577 
8 1.6 3.950128128 0.33335566 
9 1.8 4.428153754 0.387022514 
10 2 4.865784504 0.439687446 

Table (1) 

Note that the error grows slightly as the value of t increases. This controlled error 

growth is a consequence of the stability of Euler’s method, which implies that the 

error is expected to grow in no worse than a linear manner 

Error Bounds for Euler’s Method 

Although Euler’s method is not accurate enough to warrant its use in practice, it is 

sufficiently elementary to analyze the error that is produced from its application. 
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Theorem (3)  

Suppose f is continuous and satisfies a Lipschitz condition with constant L on 

 𝐷 = {(𝑥, 𝑦) | 𝑎 ≤ 𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑦 <  ∞} and that a constant M exists with 

| 𝑦′|  ≤  𝑀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  [𝑎, 𝑏], where 𝑦(𝑥) denotes the unique solution to the initial-

value problem 𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎) =  𝛼. 
Let 𝑤0, 𝑤1, . . . , 𝑤𝑁 be the approximations generated by Euler’s method for some 

positive integer N. Then, for each  𝐾 =  0, 1, 2, . . . , 𝑁, 

( )
 ( )| |


  kL x a

k k
hM

y w e
L

1
2

 

Proof 

 When k= 0 the result is clearly true, since 𝑦(𝑥0)  = 𝑤0 =  𝛼. 
From equation (4)  

( ) ( ) ( , ) ( )   
2

1
2

k k k k k
h

y x y x h f x y y ξ  

for i = 0, 1, . . . , N − 1, and from the equations in (5), 

𝑤𝑘+1  = 𝑤𝑘  +  ℎ𝑓 (𝑥𝑘, 𝑤𝑘) 
Using the notation 𝑦𝑘 =  𝑦(𝑥𝑘) 𝑎𝑛𝑑 𝑦𝑘+1 =  𝑦(𝑥𝑘+1), we subtract these two equations 

to obtain 

   ( , ( )) ( , ) ( )       
2

1 1
2

k k k k k k k k k
h

y w y w h f x y x f x w y ξ  

Hence 

( , ) ( , ) ( )       
2

1 1
2

k k k k k k k k k
h

y w y w h f x y f x w y ξ  

Now f satisfies a Lipschitz condition in the second variable with constant L, and 

| 𝑦′(𝑡)|  ≤  𝑀, so 

( )

( )

( ) ( )

( ) ( ) ( )
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Because ,      0 0 1 0 10 k ky w x x x a and 
( )( )   1 11 k hL khL e , this 

implies that 

     )( ) (( ) e e 
 

        kx ak hL k L
k k

h M h M h M
y w hL

hL hL hL
1

2 2 2
1 1

1 1 1 1 1 1
2 2 2

 

for each 𝑘 = 0, 1, . . . , 𝑁 − 1. 

 

The weakness of Theorem (3) lies in the requirement that a bound be known for the 

second derivative of the solution. Although this condition often prohibits us from 

obtaining a realistic error bound, it should be noted that if 𝜕𝑓/𝜕𝑡 and 𝜕𝑓/𝜕𝑦 both exist, 

the chain rule for partial differentiation implies that 

 

𝑦′′(𝑥) =  𝑑𝑦′/𝑑𝑥 =  𝑑𝑓/𝑑𝑥                                                                         
=  𝜕𝑓/𝜕𝑥(𝑥, 𝑦(𝑥))  +  𝜕𝑓/𝜕𝑦(𝑥, 𝑦(𝑥)) ・ 𝑓 (𝑥, 𝑦(𝑥)). 

 

So it is at times possible to obtain an error bound for 𝑦′(𝑡) without explicitly knowing 

𝑦(𝑡). 
 

Example 4  
The solution to the initial-value problem 

𝑦′ =  𝑦 − 𝑥2  +  1, 0 ≤ 𝑥 ≤  2, 𝑦(0)  =  0.5, 
was approximated in Example 3 using Euler’s method with h = 0.2. Use the inequality 

in Theorem (3) to find a bounds for the approximation errors and compare these to the 

actual errors. 

Solution 

Since 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2  +  1, we have 𝜕𝑓 (𝑥, 𝑦)/𝜕𝑦 =  1 for all y, so L = 1. For 

this problem, the exact solution is 

 𝑦(𝑥) =  (𝑥 +  1)2 − 0.5𝑒𝑥 ,                                                 
 so 𝑦′′(𝑥)  =  2 −  0.5𝑒𝑥 and 

| 𝑦′′(𝑡)|  ≤  0.5𝑒2 −  2, for all x ∈ [0, 2]. 

Using the inequality in the error bound for Euler’s method with h = 0.2, L = 1, and 

𝑀 =  0.5𝑒2  −  2 gives 

|𝑦𝑘  − 𝑤𝑘|  ≤  0.1(0.5𝑒2  −  2)(𝑒𝑥𝑘 − 1). 
 

Hence 

| 𝑦(0.2) − 𝑤1|  ≤ 0.1(0.5𝑒
2  −  2)(𝑒0.2 − 1 ) =  0.03752; 

| 𝑦(0.4)  − 𝑤2|  ≤ 0.1(0.5𝑒
2  −  2)(𝑒0.4 − 1 ) =  0.08334; 
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and so on. Table (2) lists the actual error found in Example 3, together with this error 

bound. Note that even though the true bound for the second derivative of the solution 

was used, the error bound is considerably larger than the actual error, especially for 

increasing values of x. 

 

kx  
Approximate 

solution exact solution Actual Error Error Bound 

0.2 0.8 0.829298621 0.029298621 0.037517318 

0.4 1.152 1.214087651 0.062087651 0.083341075 

0.6 1.5504 1.6489406 0.0985406 0.139310337 

0.8 1.98848 2.127229536 0.138749536 0.207671348 

1 2.458176 2.640859086 0.182683086 0.291167676 

1.2 2.949811 3.179941539 0.230130339 0.39315032 

1.4 3.451773 3.732400017 0.280626577 0.517712204 

1.6 3.950128 4.283483788 0.33335566 0.669852432 

1.8 4.428154 4.815176268 0.387022514 0.855676927 

2 4.865785 5.305471951 0.439687447 1.082643477 

Table (2) 

 

The principal importance of the error-bound formula given in Theorem (3) is that the 

bound depends linearly on the step size h. Consequently, diminishing the step size 

should give correspondingly greater accuracy to the approximations. 

Neglected in the result of Theorem (3) is the effect that round-off error plays in the 

choice of step size. As h becomes smaller, more calculations are necessary and more 

round off error is expected. In actuality then, the difference-equation form 

,

, , for each , ,..) ., .



   

0

1 0 1 1k k k k

w    α

w    w    h f(x w    k            N   
 

is not used to calculate the approximation to the solution ky  at a mesh point kx .We 

use instead an equation of the form 

 

, , for each , ,..., .) 

 

    k

0 0

1 1 0 1 1k k k k

w    α δ

u    u    h f(x u    k            N   δ
 

where kδ denotes the round-off error associated with ku . Using methods similar to 

those in the proof of Theorem (3), we can produce an error bound for the finite-digit 

approximations to ky given by Euler’s method. 
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EXERCISE (2) 

(1) Use Euler’s method to approximate the solutions for each of the following 

initial-value problems. 

( ) '  ,     , ,  .

( ) ' ,  , ,  with .

( ) ' ,  , ,  with .

( ) ' cos

( )

( ) ( )

 sin  ,  , ,

( )

i) w .(  th

     

      

     

     

3

2

a 2 0 1 0 0 0 5

b 1 2 3 2 1 0 5

c 1 1 2 1 2 0 25

d 2 3 0 1 0 1 0 25

xy xe y x y with h

y x y x y h

y
y x y h

x
y x x x y h

  

(2) The actual solutions to the initial-value problems in Exercise 1 are given here. 

Compare the actual error at each step to the error bound. 

               

( ) ( )

(b) ( )

(c) ( ) ln

(d) ( ) sin cos

  

 


 

  

3 3 21 1 1
5 25 25

1 1 4
2 3 3

a

1

1

2

2 3

x x xy x xe e e

y x x
x

y x x x x

y x x x

  

 

Higher-Order Taylor Methods 

Since the object of a numerical techniques is to determine accurate approximations 

with minimal effort, we need a means for comparing the efficiency of various 

approximation methods. The first device we consider is called the local truncation 

error of the method. 

The local truncation error at a specified step measures the amount by which the exact 

solution to the differential equation fails to satisfy the difference equation being used 

for the approximation at that step. This might seem like an unlikely way to compare 

the error of various methods. We really want to know how well the approximations 

generated by the methods satisfy the differential equation, not the other way around. 

However, we don’t know the exact solution so we cannot generally determine this, and 

the local truncation will serve quite well to determine not only the local error of a 

method but the actual approximation error. 

 

Definition (3)  
Consider the initial value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼. 

The difference equation 

, , ,for each , ,..) ., .     1 0 0 1 1k k k kw    w    h f(x w  w    α  k            N     

has local truncation error iτ 1  where 

 

,
, , for each

( ( )
,  ,. . 

)
( ) ., 


  

    1 1
1 0 1 1i i i i i i

i i i
y y hf x y y y

τ f x y i N
h h
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Where iy  and 1iy  denote the solution at ix  and 1ix , respectively. 

For example, Euler’s method has local truncation error at the ith step 





 1

1 ( ), ,i i
i i i

y y
τ f x y

h
 

 for each i = 0, 1, . . . , N − 1. 

This error is a local error because it measures the accuracy of the method at a specific 

step, assuming that the method was exact at the previous step. As such, it depends on 

the differential equation, the step size, and the particular step in the approximation. By 

considering Eq. (4) in the previous section, we see that Euler’s method has 


1 '' ,

2
( ) ( )i i

h
τ h y ξ  for some in ,( ).i i iξ x x 1   

When )''(y x  is known to be bounded by a constant M on [a, b], this implies 

 


1| ( ) ,|
2i
h

τ h M  so the local truncation error in Euler’s method is 𝑂(ℎ). 

One way to select difference-equation methods for solving ordinary differential 

equations is in such a manner that their local truncation errors are ( )pO h   for as large 

a value of p as possible, while keeping the number and complexity of calculations of 

the methods within a reasonable bound. 

Since Euler’s method was derived by using Taylor’s Theorem with n = 1 to 

approximate the solution of the differential equation, our first attempt to find methods 

for improving the convergence properties of difference methods is to extend this 

technique of derivation to larger values of n. 

Suppose the solution 𝑦(𝑥) to the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤  𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
has (𝑛 + 1) continuous derivatives. If we expand the solution, 𝑦(𝑥), in terms of its nth 

Taylor polynomial about ix  and evaluate at 1ix  , we obtain 

( ) ( )( ) ( ) ( ) ( ) ( )' ''( )
)

(
!(

, )
! !




      


n n
n n

i i i i i
h h h

y y x hy x y x y x y
n

x ξi
n

2 1
1

1 6
2 1

...   

for some 
 1( ,x )i i iξ x   

Successive differentiation of the solution, 𝑦(𝑥), gives 

 
( ) ( )' , , '' ' , ,  and, generally,(x) ( ( )) ( ) ( ( ))  , .( ) ( ( ))   1k ky f x y x y x f x y x y x f x y x  

Substituting these results into Eq. (6) gives 

( )

( )

( ) ( ) ( ) ( ) ( )

( )

, ' , ,
! !

), , (
!(

( )
)






    




n
n

i i i i i i i i

n
n

i i

h h
y y x hf x y f x y f x y

n

h
f ξ y ξ

n

x
2

1
1

1

2

7
1

...

 

The difference-equation method corresponding to Eq. (7) is obtained by deleting 
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the remainder term involving iξ . 

Taylor method of order n 

( ),( ) ( ) ( )' , , for , , ,..., N
! !






      
n

n
i i i i i i i i

w α

h h
w w hf x w f x w f x w i

n

0

2
1

1 1 2 3 1
2

...
 

Euler’s method is Taylor’s method of order one. 

 

Example 5  
Apply Taylor’s method of orders (a) two and (b) four with N = 10 to the initial-value 

problem 

𝑦′ =  𝑦 − 𝑥2 +  1,    0 ≤  𝑡𝑥 ≤  2, 𝑦(0)  =  0.5. 
Solution 

 (a) For the method of order two we need the first derivative of  

𝑓 (𝑥, 𝑦(𝑥))  =  𝑦 − 𝑥2 +  1  with respect to the variable x. Because  

𝑦′ =   𝑦 − 𝑥2 +  1 

we have    𝑓′(𝑡, 𝑦(𝑡)) =  
𝑑

𝑑𝑥
( 𝑦 − 𝑥2 +  1) =  𝑦′ −  2𝑥 = 𝑦 − 𝑥2 + 1 − 2𝑥 

so 

   

   

 

 , ' ,

     

 

( )

 

(

 

)







  

       

       

  
       

  

1

1

1

2

2
2 2

2
2 2

2
1

2

1 1 2
2

1 1 2
2

1 1
2

i i i i i

i i i i i i

i i i i i i

i i i i i

i

i

i

h
w hf t w f x w

h
w h w x w x x

h
w h w x w x x

h
w w h w x h

w

w

x

w

 

 Because N = 10 we have h = 0.2, and . 0 2ix i  for each 𝑖 =  1, 2, … , 10. Thus the 

 

. ,

.
. . .

. . . .







  
       

  

   

i i i

i i

w

w w w i i

w w i i

0

2
1

2
1

0 5

0 2
0 2 1 0 04 1 0 04

2

1 22 0 0088 0 0088 0 22

 

The first two steps give the approximations 

𝑦(0.2)  ≈  𝑤1 =  1.22(0.5) −  0.0088(0)2 −  0.008(0)  +  0.22 =  0.83; 

𝑦(0.4)  ≈  𝑤2 =  1.22(0.83)  −  0.0088(0.2)2 −  0.008(0.2) +  0.22 =  1.2158 

All the approximations and their errors are shown in Table (3) 
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i xi 
Approximate 

solution 
exact solution Error 

0 0 0.5 0.5 0 

1 0.2 0.83 0.829298621 0.000701379 

2 0.4 1.2158 1.214087651 0.001712349 

3 0.6 1.652076 1.6489406 0.0031354 

4 0.8 2.13233272 2.127229536 0.005103184 

5 1.0 2.648645918 2.640859086 0.007786833 

6 1.2 3.19134802 3.179941539 0.011406482 

7 1.4 3.748644585 3.732400017 0.016244568 

8 1.6 4.306146394 4.283483788 0.022662606 

9 1.8 4.8462986 4.815176268 0.031122332 

10 2.0 5.347684292 5.305471951 0.042212342 

Table 3: Taylor Order 2 

 

 (b) For Taylor’s method of order four we need the first three derivatives of 𝑓 (𝑥, 𝑦(𝑥)) 
with respect to x. Again using 𝑦′ =  𝑦 − 𝑥2 +  1 we have 

 

𝑓′(𝑥, 𝑦)     =  𝑦 − 𝑥2  +  1 −  2𝑥 

𝑓′′(𝑥, 𝑦)   =  𝑦′ −  2𝑥 −  2 
                   =  𝑦 − 𝑥2  +  1 −  2𝑥 −  2 =  𝑦 −  𝑥2  −  2𝑥 −  1, 

     

   

, ' , ' ,( ) ( ) (
! !

!

)

!





   

           

 
         

 
 

0

2 3

1

2 3
2 2 2

2 3 3
2 2

2 3

1 1 2 2 1
2 3

1 1
2 6 3

i i i i i i i i

i i i i i i i i i

i i i i i

w α

h h
w w hf x w f x w f x w

h h
w h w x w x x w x x

h h h
w h w x h x x

 

for 𝑖 =  0, 1, . . . , 𝑁 −  1. 

 

Because N = 10 and h = 0.2 the method becomes 

. . . .    2
1 1 2214 0 008856 0 00856 0 2186i iw w i i  

for each 𝑖 =  0, 1, . . . , 9. The first two steps give the approximations 

𝑦(0.2) ≈ 𝑤1 = 1.2214(0.5) − 0.008856(0)2 − 0.00856(0) + 0.2186 = 0.8293; 
𝑦(0.4) ≈ 𝑤2 = 1.2214(0.8293) − 0.008856(0.2)2 − 0.00856(0.2) + 0.2186   

= 1.214091 
All the approximations and their errors are shown in Table (4). 
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i xi 

Approximate 

solution 

exact 

solution Error 

0 0 0.5 0.5 0 

1 0.2 0.8293 0.82929862 1.37908E-06 

2 0.4 1.21409102 1.21408765 3.36882E-06 

3 0.6 1.648946772 1.6489406 6.17202E-06 

4 0.8 2.127239587 2.12722954 1.00514E-05 

5 1.0 2.640874432 2.64085909 1.53459E-05 

6 1.2 3.179964031 3.17994154 2.24922E-05 

7 1.4 3.732432067 3.73240002 3.20507E-05 

8 1.6 4.283528527 4.28348379 4.47392E-05 

9 1.8 4.815237743 4.81517627 6.14751E-05 

10 2.0 5.305555379 5.30547195 8.34286E-05 

Table (4) Taylor Order 4  

 

Compare these results with those of Taylor’s method of order 2 in Table (4) and you 

will see that the fourth-order results are vastly superior. The results from Table (4) 

indicate the Taylor’s method of order 4 results are quite accurate at the nodes 0.2, 0.4, 

etc. But suppose we need to determine an approximation to an intermediate point in 

the table, for example, at x = 1.25. If we use linear interpolation on the Taylor method 

of order four approximations at x = 1.2 and x = 1.4, we have 

 

𝑦(1.25)  ≈ (
1.25 −  1.4

1.2 −  1.4
)3.1799640 +

1.25 −  1.2

1.4 −  1.2
)3.7324321 = 3.3180810 

 

The true value is 𝑦(1.25)  =  3.3173285, so this approximation has an error of 

0.0007525,which is nearly 30 times the average of the approximation errors at 1.2 and 

1.4.We can significantly improve the approximation by using cubic Hermit 

interpolation. To determine this approximation for 𝑦(1.25) requires approximations to 

𝑦(1.2) 𝑎𝑛𝑑 𝑦(1.4)as well as approximations to 𝑦(1.2) and 𝑦(1.4). However, the 

approximations for 𝑦(1.2) and 𝑦(1.4) are in the table, and the derivative 

approximations are available from the differential equation, because 𝑦′(𝑥)  =  𝑓 (𝑥, 𝑦).  
In our example 𝑦′(𝑥)  =  𝑦(𝑥)  − 𝑥2  +  1, so 

 

𝑦′(1.2)  =  𝑦(1.2) − (1.2)2  +  1 ≈  3.1799640 − 1.44 + 1 = 2.7399640 

and 

𝑦′(1.4)  =  𝑦(1.4) − (1.4)2  +  1 ≈  3.7324327 − 1.96 + 1 = 2.7724321. 
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EXERCISE (3) 

(1) Use Taylor’s method of order two to approximate the solutions for each of the 

following initial-value problems. 

 

( ) '  ,     , ,  with .

( ) ' ,  , ,  with .

( ) ' ,  , ,  with .

( ) '   ,  

( )

( ) ( )

( )

( .), ,  

     

      

     

     

3

2

a 2 0 1 0 0 0 5

b 1 2 3 2 1 0 5

c 1 1 2 1 2 0 25

d 2 3 0 1 0 1 0 25

xy xe y x y h

y x y x y h

y
y x y h

x
y cos x sin x x y withh

 

 

(2) Repeat Exercise 1 using Taylor’s method of order four. 

 

(3) Given the initial- value problem 

 , , ( )       2 2 21 1 2 1 1x y xy x y x y   

With the exact solution    1y x  

(a) Use Taylor’s method of order two with .0 05h  to approximate the solution 

and compare it with the actual values of y  . 

(b) Use the answer generated in part (a) and linear interpolation polynomial to 

approximate the value ( . )1 052y  and ( . )1 555y . 

(c)  Use Taylor’s method of order four with .0 05h  to approximate the 

solution and compare it with the actual values of y . 

(d) Use the answer generated in part (a) and cubic interpolation polynomial to 

approximate the value ( . )1 052y  and ( . )1 555y . 

 

Runge-Kutta Methods 

  The Taylor methods outlined in the previous section have the desirable property of 

high order local truncation error, but the disadvantage of requiring the computation and 

evaluation of the derivatives of 𝑓(𝑥, 𝑦). This is a complicated and time-consuming 

procedure for most problems, so the Taylor methods are seldom used in practice. 

Runge-Kutta methods have the high-order local truncation error of the Taylor 

methods but eliminate the need to compute and evaluate the derivatives of 𝑓(𝑥, 𝑦).  
   Before presenting the ideas behind their derivation, we need to consider Taylor’s 

Theorem in two variables. 

 

Theorem (4) 5.13 

Suppose that 𝑓(𝑥, 𝑦) and all its partial derivatives of order less than or equal to n + 1 

are continuous on 

 𝐷 = {(𝑥, 𝑦) | 𝑎 ≤  𝑥 ≤  𝑏, 𝑐 ≤  𝑦 ≤  𝑑},  
and let ( , )0 0x y D . For every ( , )x y D , there exists ξ between x  and 0x , and μ 

between y and 0y  with  

       ,      ,      ,  , n nf x y P x y R x y   
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Where 

( , ) ( , )
( , ) ( , ) ( ) ( )

( ) ( , ) ( , ) ( ) ( , )
( )( ) ...

( , )
( ) ( )

!






  
       

     
      

    

   
    

    


0 0 0 0
0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0

0 02 2

0 0
0 0

0

2 2

1

n

nn
n j j

n j j
j

f x y f x y
P x y f x y x x y y

x y

x x f x y f x y y y f x y
x x y y

x yx y

n f x y
x x y y

jn x y

and   
( , )

( , ) ( ) ( )
( )!


 

 


  
   

   


11
1

0 0 1
0

11

1

nn
n j j

n n j j
j

n f ξ μ
R x y x x y y

jn x y
 

 

The function ( , )nP x y is called the nth Taylor polynomial in two variables for the 

function f about ( , )0 0x y , and ( , )nR x y  is the remainder term associated with ( , )nP x y  

 

Runge-Kutta Methods of Order Two 

Consider the differential equation  
' ( , ), , ( ) ( )   y f x y a x b y a α 8   

Since we want to construct a second-order method, we start with the Taylor expansion 

( ) ( ) '( ) ''( ) ( )    
2

3

2

h
y x h y x hy x y x Ο h  

The first derivative can be replaced by the right-hand side of the differential equation 

(8), and the second derivative is obtained by differentiating (8), 

 

''( ) ( , ) '
   

    
   

d f f f f
y x f x y y f

dx x y x y
       

Substitute in (1) 

( ) ( ) ( , ) ( , ) ( )

( ) ( , ) ( , ) ( , ) ( ) ( )

  
      

  

  
      

  

h f f
y x h y x hf x y f x y Ο h

x y

h h f f
y x f x y f x y h h f x y Ο h

x y

2
3

3

2

9
2 2

 

Recalling the multivariate Taylor expansion 

( , ) ( , ) ( ) ( )
 

     
 

f f
f x h y k f x y h k O h

x y
2 10  

We see that the expression in bract in (9) is 

( , ) ( , ) ( , ) ...
 

     
 

f f
f x h y hf f x y h hf x y

x y
      Therefor we get 
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( ) ( ) ( , ) ( , ) ( )

( ) ( , ) ( , ) ( )

( ) ( )

      

     

   

h h

h

h

y x h y x f x y f x h y hf Ο h

y x f x y f x h y hf Ο h

y x k k Ο h

3
2 2

3
2

3
1 22

 

Runge-Kutta Methods of Order Two 

 

( , )

( , )

for , , ,...,





  

    

i i

i i

i i

w α

k f x y

k f x h y hk

h
w w k k i N

0

1

2 1

1 1 2 0 1 2 1
2

  

Midpoint Method 

 ,

( , ,  for ,

( )

 ,.) .., .

i i

h
i i i i

w α

k hf x w

w w hf x w k i N

0

1
1 2 2

0 1 1

 

 

Modified Euler Method 

𝑤0 =  𝛼, 
 ,

      [    ,          ,w ) for      ,  , . . . ,     

i i

i i i i i i

k hf x w

h
w w f x w f x k i N1 1 0 1 1

2

  

 

Example 6  
Use the Midpoint method and the Modified Euler method with        N = 10, h = 0.2, 

𝑥𝑖 =  0.2𝑖,and 𝑤0 =  0.5,  to approximate the solution to our usual example, 

' ,  , . .( )y y x x y2 1 0 2 0 0 5   

Solution  
The difference equations produced from the various formulas are 

Midpoint method:                  . . . . ;i iw w i i2
1 1 22 0 0088 0 008 0 218   

Modified Euler method:         . . . .i iw w i i2
1 1 22 0 0088 0 008 0 216  , 

for each 𝑖 =  0, 1, . . . , 9.  

 

The first two steps of these methods give 

Midpoint method:                  (. . . . . . ;) ( ) ( )w 2
1 1 22 0 5 0 0088 0 0 008 0 0 218 0 828   

Modified Euler method:   . . . .( ( .( ) .) )w 2
1 1 22 0 5 0 0088 0 0 008 0 0 216 0 826  , 



17 | P a g e 
 

Midpoint method: 

 (. . . . .( . .) ( ) .)w 2
2 1 22 0 828 0 0088 0 2 0 008 0 2 0 218 1 21136  

 Modified Euler method:  

(. . . . .( . .) ( ) .)w 2
2 1 22 0 826 0 0088 0 2 0 008 0 2 0 216 1 20692  

 Table 5 lists all the results of the calculations. For this problem, the Midpoint method 

is superior to the Modified Euler method. 

 

ix   ( )iy x   Midpoint 

Method 

Error Modified Euler 

Method 

Error 

0.0 0.5000000 0.5000000 0 0.50000000 0 

0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986 

0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677 

0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982 

0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938 

1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715 

1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627 

1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138 

1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866 

1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577 

2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173 

Table (5)  
 

Higher-Order Runge-Kutta Methods 

The term
( ) ( , )T x y3

 ) can be approximated with error ( )O h3
 by an expression of the 

form ( ( ( )), , , ,)f x α y δ f x α y δ f x y1 1 2 2  involving four parameters, the 

algebra involved in the determination of , , ,  andα δ α δ1 1 2 2 is quite involved. The 

most common ( )O h3
is Heun’s method, given by 

 

Heun’s method 

( , )

( h, )

( h, )

for ,  ,. . ., .

i i

i i

i i

i i

w α

k hf x y

k hf x w k

k hf x w k

w w k k i N

0

1

1 1
2 13 3

2 2
3 23 3

1
1 1 34

3 0 1 1
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Illustration  

Applying Heun’s method with , . , . ,  and .iN h x i w010 0 2 0 2 0 5 to 

approximate the solution to our usual example,

' ,  , . .( )y y x x y2 1 0 2 0 0 5   

gives the values in Table (6) Note the decreased error throughout the range over the 

Midpoint and Modified Euler approximations.  

 

ix  ( )iy x  Heun’s Method Error 

0.0 0.5000000 0.5000000 0 

0.2 0.8292986 0.8292444 0.0000542 

0.4 1.2140877 1.2139750 0.0001127 

0.6 1.6489406 1.6487659 0.0001747 

0.8 2.1272295 2.1269905 0.0002390 

1.0 2.6408591 2.6405555 0.0003035 

1.2 3.1799415 3.1795763 0.0003653 

1.4 3.7324000 3.7319803 0.0004197 

1.6 4.2834838 4.2830230 0.0004608 

1.8 4.8151763 4.8146966 0.0004797 

2.0 5.3054720 5.3050072 0.0004648  

Table (6) 

 

Runge-Kutta methods of order three are not generally used. The most common 

Runge-Kutta method in use is of order four in difference-equation form, is given by 

the following. 

 

Runge-Kutta Order Four 

,

, ,

( , ),

( , ),

, ,

, for ,  ,. . .,

(

) .

( )

)

(

1

1
2 12 2

1
3 22 2

4 1 3

1
1 1 2 3 46

0

2 2 0 1 1

i i
h

i

h
i

i i

i i

w α

k hf x w

k hf x wi k

k hf x wi k

k hf x w k

w w k k k k i N

 

 

 This method has local truncation error ,( )O h4  provided the solution ( )y x  as five 

continuous derivatives. We introduce the notation , , ,k k k k1 2 3 4  into the method is to 

eliminate the need for successive nesting in the second variable of .( ),f t y   
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Example 7  

Use the Runge-Kutta method of order four with h = 0.2, N = 10, and .ix i0 2  to 

obtain approximations to the solution of the initial-value problem 

' ,  , . .( )y y x x y2 1 0 2 0 0 5  

Solution  

The approximation to .( )y 0 2  is obtained by 

 

.

. ,  . . . .

. . ,  . .

. . ,  . .

. . ,

( ) ( )

( )

( )

( )

( ( ) (

 . .

. . . .) ). . .

w

k f

k f

k f

k f

w

0

1

2

3

4

1

0 5

0 2 0 0 5 0 2 1 5 0 3

0 2 0 1 0 65 0 328

0 2 0 1 0 664 0 3308

0 2 0 2 0 8308 0 35816

0 5 16 0 3 2 0 328 2 0 3308 0 35816 0 8292933

  

The remaining results and their errors are listed in Table (7). 

 

 

ix   Exact 

( )i iy y x  

Runge-Kutta 

Order Four 

w i  

Error 

y wi i  

0.0 0.5000000 0.5000000  0.0 

0.2 0.8292986 0.8292933 0.0000053 

0.4 1.2140877 1.2140762 0.0000114 

0.6 1.6489406 1.6489220 0.0000186 

0.8 2.1272295 2.1272027 0.0000269 

1.0 2.6408591 2.6408227 0.0000364 

1.2 3.1799415 3.1798942 0.0000474 

1.4 3.7324000 3.7323401 0.0000599 

1.6 4.2834838 4.2834095 0.0000743 

1.8 4.8151763 4.8150857 0.0000906 

2.0 5.3054720 5.3053630 0.0001089 

Table (7)  
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EXERCISE (4) 

(1)  Use the Modified Euler method to approximate the solutions to each of the 

following initial-value problems, and compare the results to the actual values. 

(a)  ' ,  , ,)  . ;(xy xe y x y with h3 2 0 1 0 0 0 5    

             Actual solution     .( ) x x xy x xe e e3 3 21 1 1
5 25 25

  

(b) ' ,  ,( ) ( ) ,  with . ;y x y x y h21 2 3 2 1 0 5   

            Actual solution    ( )
x

y x x 1
1

 . 

(c)  (' ,  , ,  with .)
y
x

y x y h1 1 2 1 2 0 25  ;  

         Actual solution ln( ) .y x x x x2   

(d)  '   ,  , ,  wi . ;( th)y cos x sin x x y h2 3 0 1 0 1 0 25   

        Actual solution  (  )  y x sin x cos x1 1 4
2 3 3

2 3  . 

(4)  Repeat Exercise 1 using the Midpoint method. 

(5) Repeat Exercise 1 using the Runge-Kutta method of order four. 

(6)  Show that Heun’s method can be expressed in difference form, similar to that of 

the Runge-Kutta method of order four, as 

,

, ,

( , ),

( , ,

,

for each ,  ,. . .

( )

)

,

(

i i

h
i

h h
i

i i

w α

k hf x w

k hf x wi k

k hf x wi k

w w k k

i N

0

1

1
2 13 3

2 2
3 23 3

1
1 1 34

3

0 1 1

  

(7) The Runge-Kutta method of order four can be written in the form 

,

 , ,  ,w

, ,

( ) ( ( )

 ,

, , ,

)

( ( ( ))

,w

)

( ( ( ( )) ).)

h h
i i i i i i i i

h
i i i i i i

h
i i i i i i i i

w α

w w f x w f x α h w δ hf x

f x α h w δ hf x γ h w γ hf x w

f x α h w δ hf x γ h w γ hf x γ h w γ hf x

0

1 1 16 3

2 2 2 33

3 3 4 5 6 76

  

      Find the values of the constants 

, , , , , , , , , , ,  and .α α α δ δ δ γ γ γ γ γ γ1 2 3 1 2 3 2 3 4 5 6 7  
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Multistep Methods 

The methods discussed to this point in the chapter are called one-step methods because 

the approximation for the mesh point ix 1 involves information from only one of the 

previous mesh points, ix . Although these methods might use function evaluation 

information at points between ix and ix 1, they do not retain that information for 

direct use in future approximations. All the information used by these methods is 

obtained within the subinterval over which the solution is being approximated. 

The approximate solution is available at each of the mesh points , ,..., ix x x0 1  before 

the approximation at ix 1 is obtained, and because the error ( )j jw y x  tends to 

increase with j, so it seems reasonable to develop methods that use these more accurate 

previous data when approximating the solution at ix 1. Methods using the 

approximation at more than one previous mesh point to determine the approximation 

at the next point are called multistep methods. The precise definition of these methods 

follows, together with the definition of the two types of multistep methods. 

 

Definition (4): 
An m-step multistep method for solving the initial-value problem 

 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼,           (11) 
 

has a difference equation for finding the approximation 𝑤𝑖+1at the mesh point ix 1 

represented by the following equation, where m is an integer greater than 1: 

 

𝑤𝑖+1 = 𝑎𝑚−1𝑤𝑖 + 𝑎𝑚−2𝑤𝑖−1 +⋯+ 𝑎0𝑤𝑖+1−𝑚 

 

+ℎ[𝑏𝑚𝑓(𝑥𝑖+1, 𝑥𝑖+1) + 𝑏𝑚−1𝑓(𝑥𝑖 , 𝑥𝑖) + ⋯+ 𝑏0𝑓(𝑥𝑖+1−𝑚, 𝑥𝑖+1−𝑚)]                     (12) 
 

for 𝑖 =  𝑚 −  1,𝑚, . . . , 𝑁 −  1,  

 

where  ℎ = (𝑏 − 𝑎)/𝑁, the m ma a a1 2 0, ,...,  and m mb b b1 0, ,..., . 

are constants, and the starting values 

 

𝑤0 = 𝛼,𝑤1 = 𝛼1, 𝑤2 = 𝛼2, . . . , 𝑤𝑚−1  =  𝛼𝑚−1 

are specified.  

 

When mb 0  the method is called explicit, or open, because Eq. (12) then gives 

iw 1  explicitly in terms of previously determined values. When mb 0  the method 

is called implicit, or closed, because iw 1 occurs on both sides of Eq. (12), so iw 1

is specified only implicitly. 
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For example,  

The equations 

 

[ ( ) ( )

,

( ) ( )

  ,  ,     

, , , ,],i i i i i i i i i i

w α w α w α w α

h
w w f x w f x w f x w f x w

0 1 1 2 2 3 3

1 1 1 2 2 3 355 59 37 9
24

 

                               for each i = 3, 4, . . . , N −1,                                   (13) 

define an explicit four-step method known as the fourth-order Adams-Bashforth 

technique.  

 

The equations 

[ ( ) ( ) (

,  , 

, , , ) ), ],(i i i i i i i i i i

w α w α w α

h
w w f x w f x w f x w f x w

0 1 1 2 2

1 1 1 1 1 2 2199 5
24

 

                          for each i = 2, 3, . . . , N−1,                           (14) 

define an implicit three-step method known as the fourth-order 

Adams-Moulton technique. 

The starting values in either equation (13)  or (14)  must be specified, generally by 

assuming 𝑤0 = 𝛼 and generating the remaining values by either a Runge-Kutta or 

Taylor method. We will see that the implicit methods are generally more accurate then 

the explicit methods, but to apply an implicit method such as (14) directly, we must 

solve the implicit equation for iw 1 . This is not always possible, and even when it 

can be done the solution for iw 1  may not be unique. 

Example 8  
In Example (7) see Table (7) we used the Runge-Kutta method of order four with                

h = 0.2 to approximate the solutions to the initial value problem 

 

𝑦′ =  𝑦 − 𝑥2  +  1, 0 ≤  𝑥 ≤  2, 𝑦(0)  =  0.5. 
 

The first four approximations were found to be 

 𝑦(0)  =  𝑤0 =  0.5,  
𝑦(0.2)  ≈  𝑤1 = 0.8292933, 
𝑦(0.4)  ≈  𝑤2 =  1.2140762 

, 𝑎𝑛𝑑 𝑦(0.6)  ≈  𝑤3 =  1.6489220. 

 

 Use these as starting values for the fourth-order Adams-Bashforth method to compute 

new approximations for y(0.8) and y(1.0), and compare these new approximations to 

those produced by the Runge-Kutta method of order four. 

 

Solution  
For the fourth-order Adams-Bashforth we have 
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.
.         [   . ,       . ,       . ,       , ]

.     . [  ( . ,  . )    ( . ,  . )

   ( . ,  . )    ( ,  . )]

  .     . ( .

4 3 3 2 1
0 2

0 8 55 0 6 59 0 4 37 0 2 9 0 0
24

1 6489220 0 224 55 0 6 1 6489220 59 0 4 1 2140762

37 0 2 0 8292933 9 0 0 5

1 6489220 0 0083333 55 2 2889220

y w w f w f w f w f w

f f

f f

)    ( . )   ( . )    ( . )

  .

59 2 0540762 37 1 7892933 9 1 5

2 1272892

  

and 

.
.  . ,  . ,

 . ,  

( ) ( ( ) ( )

( ) ( ))

( ( ) ( )

( ) (

. ,

.
.  . ,  .  . ,  .

 . ,  .  . ,  .

.

)

( ( .

)

.

y w w f w f w

f w f w

f f

f f

5 4 4 3

2 1

0 2
1 0 55 0 8 59 0 6

24

37 0 4 9 0 2

0 2
2 1272892 55 0 8 2 1272892 59 0 6 1 6489220

24

37 0 4 1 2140762 9 0 2 0 8292933

2 1272892 0 0083333 55 2 4872 .) (

( ) ( ))

)

. . .

892 59 2 2889220

37 2 0540762 9 1 7892933 2 6410533

  

 

The error for these approximations at x= 0.8 and x = 1.0 are, respectively 

 

|2.1272295 − 2.1272892| = 5.97 × 10−5 and |2.6410533 − 2.6408591| = 1.94 × 10−4. 

The corresponding Runge-Kutta approximations had errors 

|2.1272027 − 2.1272892| = 2.69 × 10−5 and |2.6408227 − 2.6408591| = 3.64 × 10−5. 

 

Adams-Bashforth method  
To begin the derivation of a multistep method, note that the solution to the initial-value 

problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
if integrated over the interval[ ],i ix x 1  , has the property that 

'( )( ) ( ( , ( )) .)
i i

i i

x x

i i
x x

y x y x y x dx f x y x dx
1 1

1   

Consequently, 

( ) ( ( , ( )) ) .
i

i

x

i i
x

y x y x f x y x dx
1

1 .                      (15) 

However we cannot integrate 𝑓 (𝑥, 𝑦(𝑥)) without knowing 𝑦(𝑥), the solution to the 

problem, so we instead integrate an interpolating polynomial 𝑃(𝑥) to 𝑓 (𝑥, 𝑦(𝑥)), one 

that is determined by some of the previously obtained data points  

( ) ( ), , , ,...,( .),0 0 1 1 i ix w x w x w  When we assume, in addition, that ( ) ,i iy x w   

Eq. (15) becomes 
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(  )       . 
i

i

x

i i
x

y x w P t dt
1

1 16  

To derive an Adams-Bashforth explicit m-step technique, we form the backward 

difference polynomial ( )mP x1   through ( ), , ...,( ,),1 1i i i ix f x f  

,( )1 1i m i mx f  where ( , ( ))i i if f x y x .  

Since (x)mP 1  is an interpolator polynomial of degree m−1, some number 

 in  , i i m iξ x x1  exists with 

( )( ( ))
( ( )) ( ) ( )( )

 ,

!
( ), 1 1 1

m
i i

m i i i m
f ξ y ξ

f x y x P x x x x x x x
m

...  

Introducing the variable substitution ix x sh  , with dt = h ds, into ( )mP t1  and 

the error term implies that 

( )

 , ,

,
(

( ) ( ) (

)( )...( )
!

,

)

( ( ))

( ) ( )( ),

( )
!

i i i

i i i

i

i

i

i

x x x m
k k

m i i
kx x x

x m
i i

i i i m
x

x m
k k

i i
kx

m

s
f x y dx P dx f x y dx

k

f ξ y ξ
x x x x x x dx

m

s
f x y dx h f x y ds

k

h
s

m

1 1 1

1

1

1

1
0

1 1

11

0 0

1 1

0

1

1

( )( )...( ( ))) (,m
i is s m f ξ y ξ ds1 1

  

The integral ( )k
k

s
ds

k
I

1

0

1 for various values of k are easily evaluated and are 

listed in Table( 8) 

k  kI  

0 1 

1 
1

2
 

2 
5

12
 

3 
3

8
 

4 
251

720
 

5 
95

288
 

Table (8) 
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And we use the relation        ( )ks s k

k k

1
1  

 For example, when k = 3,     
( )( )

( )
!

s s s s s3 2 2 1
1

3 3 3
 

( )
( )( )( )

( )
( ) (

!
)k s s

ds ds s s s
k

3 31 1 1
3

0 0 0

1 1 3
1 1 1 2

3 3 8
 

As a consequence, 

( )

( )

( ( ))

 , ( , ) ( , ) ( , ) ...

( )( )...( )  , ( )
!

i

i

x

i i i i i i
x

m
m

i i

f x y dx h f x y f x y f x y

h
s s s m f ξ y ξ ds

m

1
2

1 1

0

1 5

2 12

1 1 17

 

Because 𝑠(𝑠 +  1)… (𝑠 +  𝑚 −  1) does not change sign on [0, 1], the Weighted 

Mean Value Theorem for Integrals can be used to deduce that for some number iμ  , 

where i m i ix μ x1 1  , the error term in Eq. (17) becomes 

( )

( )

( ( ))( )( )...( )  

(

,
!

 ,
( )( ).

( )
..( )

)

!

1 1

0

1 1

0

1 1

1 1

m
m

i i

m m
i i

h
s s s m f ξ y ξ ds

m

h f μ y μ
s s s m ds

m

 

( )(
( )( )...( )

),
!

( )
1

1

0

1 1m m
i i

s s s m
h f μ y μ ds

m
 

 

Hence the error in (17) simplifies to 

( )( , ) ))((m m m
m i i

s
E h f μ y μ ds

m

1
1

0

1                         (18) 

But ( ) ( ( , ( )) ) .
i

i

x

i i
x

y x y x f x y x dx
1

1  

so Eq. (15) can be written as 

( )( ) ( ) ( ). (, , . (( )) )
m

k m m
i i i i k i i m

k
y x y x h f x y I h f μ y μ I

1
1

1
0

19  

Where ( )k s
ds

k

1

0

1  
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Example 9  

Use Eq. (19) with m = 3 to derive the three-step Adams-Bashforth technique. 

Solution  
We have 

( ) ( ) ( , ) ( , ) ( , ) ...

( , ) ( , ) ( , )

( )

( , ) ( , ) ( , )

( ) ( ) ( , ) ( , ) (

i i i i i i i i

i i i i i i

i

i i i i i i

i i i i i i

y x y x h f x y f x y f x y

f x y f x y f x y
y x h

f x y f x y f x y

h
y x y x f x y f x y f

2
1

1 1

1 1 2 2

1 1 1

1 5

2 12

1

2

5
2

12

23 16 5
12

, )i ix y2 2

 

Then the general form  

 

( ) ( ) ( , ) ( , ) ( , )i i i i i i i i
h

y x y x f x y f x y f x y1 1 1 2 223 16 5
12

 

( ) ( )( ( )) ( ( )) ,  ,m i i i iE h f μ y μ I h f μ y μ4 3 4 3
3

3

8
 

 

The three-step Adams-Bashforth method is, consequently, 

, , ,

( , ) ( , ) ( , )i i i i i i i i

w α w α w α

h
w w f x w f x w f x w

0 1 1 2 2

1 1 1 2 223 16 5
12

 

for i = 2, 3, . . . , N − 1. 

Multistep methods can also be derived using Taylor series. An example of the 

procedure involved is considered in following Exercise 

 

EXERCISE (5) 
(1) Derive the Adams-Bashforth Three-Step method by the following method. Set 

            ( ) ( ) ( , ) ( , ) ( , )i i i i i i i iy x y x ahf x y bhf x y chf x y1 1 1 2 2  

Expand ( , ), ( , )i i i if x y f x y1 1 and ( , )i if x y2 2  in Taylor series about

( , )i ix y , and equate the coefficients of h, h2 and h3 to obtain a, b, and c. 

 

(2)  (a)  Derive the Adams-Bashforth Two-Step method by using the Lagrange 

form of the interpolating polynomial. 

(b)  Derive the Adams-Bashforth Four-Step method by using Newton’s 

backward-difference form of the interpolating polynomial. 

(3) Derive Simpson’s method by applying Simpson’s rule to the integral 

( ) ( ( , ( )) ) .
i

i

x

i i
x

y x y x f x y x dx
1

1  
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The local truncation error for multistep methods is defined analogously to that of 

One-step methods. As in the case of one-step methods, the local truncation error 

provides a measure of how the solution to the differential equation fails to solve the 

difference equation. 

 

Definition (5) 

If 𝑦(𝑥) is the solution to the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
and 

 

[ ( , ) ( ) (, ], )

i m i m i i m

m i i m i i i m i m

w a w a w a w

h b f x w b f x w b f x w

1 1 2 1 0 1

1 1 1 0 1 1

・ ・ ・

・ ・ ・
 

 

is the (𝑖 + 1)𝑠𝑡 step in a multistep method, the local truncation error at this step is 

 

[ ( ) ( ) ( )] (

...

, , . ).. ,

i m i m i i m
i

m i i m i i i m i m

w a w a w a w
τ

h

b f x w b f x w b f x w

1 1 2 1 0 1
1

1 1 1 0 1 1 20

 

  

for each 𝑖 = 𝑚 − 1,𝑚, . . . , 𝑁 − 1. 

 

Example 10  

Determine the local truncation error for the three-step Adams-Bashforth method 

derived in Example 9. 

 

Solution 

 Considering the form of the error given in Eq. (18) and the appropriate entry in Table 

8 gives 

( )

( ) ( )

( ( ))

( (

 , ( )

 , ( )  )) ( ( )),

m m m
m i i

i i i i

s
E h f μ y μ ds

m

s h
E h f μ y μ ds h f μ y μ

1
1

0

41
4 3 3 4 3

3
0

1

3
1

3 8

 

Using the fact that 
( ) ( )( ( )) (, )i i if μ y μ y μ3 4

 and the difference equation derived in 

Example 9, the truncation error is  

( ) ( )

( ) ( )
( , ) ( , ) ( , )

( , ( )) ( , ( )) For ,

1
1 1 1 2 2

4 3
3 3

2 1

1
23 16 5

12

1 3 3

12 8

i i
i i i i i i i

i i i i i i i

y x y x
τ f x y f x y f x y

h

h h
f μ y μ f μ y μ μ x x

h
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Adams-Bashforth Explicit Methods 

Some of the explicit multistep methods together with their required starting values and 

local truncation errors are as follows. The derivation of these techniques is similar to 

the procedure in Examples 9 and 10. 

 

Adams-Bashforth Two-Step Explicit Method 

Use Eq. (19) with m = 2 to derive the two-step Adams-Bashforth technique. 

( )

( )

( )( )

( ( ))

( ) ( ) ( (

( ) ( )  ,

 , ( )

( ) ( ))

( ) (

)  ,  , ,

( ) ( )  ,  ,

m
k k

i i i i
k

m m m
i i

i i i i i i i i

i i i i i

s
y x y x h f x y ds

k

s
h f μ y μ ds

m

y x y x h f x y f x y h f μ y μ

y x y x h f x y f x

11

1
0 0

1
1

0

3 2
1

1

1

1

5

12

1

2

1

2
( )

( )

,

( ) ( )  

) ( ( ))

( ) ( ) (,  , )

i i i

i i i i i i i

y h f μ y μ

h
y x y x f x y f x y h y μ

3 2

3 3
1 1

5

12

5
3 1

2 12

 

 

( ) ( )

, ,

 ,  , ( )

0 1 1

1 13 1 21
2

i i i i i i

w α w α

h
w w f x w f x w

 

Where   𝑖 =  1, 2, . . . , 𝑁 −  1.  

The local truncation error is ( )( )i iτ h y μ2 3
1

5

12
for some ,i i iμ x x1 1  

Adams-Bashforth Three-Step Explicit Method 

When   m = 3 we derive the three-step Adams-Bashforth technique 

, , ,

( , ) ( , ) ( , )i i i i i i i i

w α w α w α

h
w w f x w f x w f x w

0 1 1 2 2

1 1 1 2 223 16 5
12

    (22) 

Where   𝑖 =  2, 3, . . . , 𝑁 −  1.  

The local truncation error is  ( )( , ( ))i i i
h

τ f μ y μ
3

3
1

3

8
for some  ,i i iμ x x2 1  

Adams-Bashforth Four-Step Explicit Method 

when 𝑚 =  4 to derive the four-step Adams-Bashforth technique 
, , ,

( , ) ( , ) ( , ) ( , )i i i i i i i i i i

w α w α w α w α

h
w w f x w f x w f x w f x w

0 1 1 2 2 3 3

1 1 1 2 2 3 355 59 37 9
24

(23) 

Where  𝑖 =  3, 4, . . . , 𝑁 −  1.  
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The local truncation error is ( )( , ( ))i i i
h

τ f μ y μ
4

4
1

251

720
 

for some ,i i iμ x x3 1  

 

Adams-Bashforth Five-Step Explicit Method 

Put  m = 5 to derive the five-step Adams-Bashforth technique 

, , , ,

( , ) ( , ) ( , )

( , ) ( , )

i i i i i i
i i

i i i i

w α w α w α w α w α

f x w f x w f x wh
w w

f x w f x w

0 1 1 2 2 3 3 4 4

1 1 2 2
1

3 3 4 4

1901 2774 2616

720 1274 251

  (24) 

Where  𝑖 =  4, 5, . . . , 𝑁 −  1.  

The local truncation error is  ( )( , ( ))i i i
h

τ f μ y μ
5

5
1

95

288
 

for some       ,i i iμ x x4 1  

 

Adams-Moulton Implicit Methods 

Implicit methods are derived by using (x ( ( ), , ) )i i if x y x1 1 1  as an additional 

interpolation node in the approximation of the integral  

( , )
i

i

x

x

f x y dx
1

  

 

To begin the derivation of Adams-Moulton Implicit Methods, note that the solution 

to the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
if integrated over the interval[ ],i ix x 1  , has the property that 

'( )( ) ( ( , ( )) .)
i i

i i

x x

i i
x x

y x y x y x dx f x y x dx
1 1

1   

Consequently, 

( ) ( ( , ( )) ) .
i

i

x

i i
x

y x y x f x y x dx
1

1 .                                        (15) 

However we cannot integrate 𝑓 (𝑥, 𝑦(𝑥)) without knowing 𝑦(𝑥), the solution to the 

problem, so we instead integrate an interpolating polynomial 𝑃(𝑥) to 𝑓 (𝑥, 𝑦(𝑥)), one 

that is determined by some of the previously obtained data points  

, , , ,. . ., ,( ) ( ) ( ),(x , )i ii ix w x w x w w10 0 1 11  When we assume, in addition, that 

( ) ,i iy x w   
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Eq. (15) becomes   (  )       . 
1

1

i

i

x

i i
x

y x w P t dt (16) 

Although any form of the interpolating polynomial can be used for the derivation, it is 

most convenient to use the Newton backward-difference formula including the point 

(x , )i iw1 1  , because this form more easily incorporates the most recently calculated 

data. 

To derive an Adams-Moulton Implicit Methods m-step technique, we form the 

backward difference polynomial )(mP x   through the set of points 

(x , ), , , , ,. . .( (,) ( ) ),i i i ii i i m mi x f x ff x f1 1 1 1 1 1  where  ( , ( ))i i if f x y x . 

Since (x)mP  is an interpolator polynomial of degree m, some number 

 in  , i i m iξ x x1 1   

exists with 
( ) ,

,
( )

( ( ))
( ( )) ( ) ( )( )

!
( ) ( )

m
i i

m i i i i m
f ξ y ξ

f x y x P x x x x x x x x x
m

1

1 1 1
1

・ ・ ・  

Introducing the variable substitution ix x sh  , with dt = h ds, into ( )mP t  and the 

error term implies that 

 

( )

 , ,

,
( )( )...( )

( )

( ) ( ) ( )

( ( ))

!

1 1 1

1

1 1
0

1

1 1

1

1

i i i

i i i

i

i

x x x m
k k

m i i
kx x x

x m
i i

i i i m
x

s
f x y dx P dx f x y dx

k

f ξ y ξ
x x x x x x dx

m

 

)
) ),( (,( )

1 1

1 1
0 0

1
1

i

i

x m
k k

i i
kx

s
f x y dx h f x y ds

k
 

( )( )( )( )...( ) ,
(

( (
)!

))
2 1

0

1 1 1
1

m
m

i i
h

s s s s m f ξ y ξ ds
m

  

The integral ( )k
k dI

s
s

k

1

0

1
1 for various values of k are easily evaluated and 

are listed in the following table 

And we use the relation            ( )ks s k

k k

1
1  

 For example, when k = 3,        
( )( )

( )
!

s s s s s3 2 2 1
1

3 3 3
 

( )
( )( )( )

( )
( ) (

!
)k s s

ds ds s s s
k

3 31 1 1
3

0 0 0

1 1 3
1 1 1 2

3 3 8
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k  kI  

0 1 

1 
1

2
 

2 
1

12
 

3 
1

24
 

4 
53

60
 

  

As a consequence, 

( )

 , ( , ) ( , ) ( , ) ...

 ,
(s )( )( )...( )

( )!

( )

( ( )
(

)
)

1
2

1 1 1 1 1 1

2 1 1

0

1

1 5

2 12

1 1 1 7
1

i

i

x

i i i i i i
x

m m
i i

f x y dx h f x y f x y f x y

h f μ y μ
s s s m ds

m

 

Because (𝑠 − 1)𝑠(𝑠 +  1)… (𝑠 +  𝑚 −  1) does not change sign on [0, 1], the 

Weighted Mean Value Theorem for Integrals can be used to deduce that for some 

number iμ  , where i m i ix μ x1 1  , the error term in Eq. (17) becomes 

( )

( )

( )

( ( ))

( ( )

( )( )( )...( )  ,
( )!

 ,
( )( )( )...( )

( )!

( )( )( )...( )
 ,

(
( )

!
(

)

)

)

m
m

i i

m m
i i

m m
i i

h
s s s s m f ξ y ξ ds

m

h f μ y μ
s s s s m ds

m

s s s s m
h f μ y μ ds

m

2 1
1

0

2 1 1

0

1
2 1

0

1 1 1
1

1 1 1
1

1 1 1

1

 

 

 



32 | P a g e 
 

Hence the error in (17) simplifies to 

( )( ( )
( )

 , ( ))m m m
m i i

s
E h f μ y μ ds

m

1
2 1 1

0

1
1

1
                        (18) 

But ( ) ( ( , ( )) ) .
i

i

x

i i
x

y x y x f x y x dx
1

1  

Then the difference equation is 

( )( ) ( ) , , . ( )( ). ( ( ))
m

k m m
i i i i k i i m

k
y x y x h f x y I h f μ y μ I2 1

1 1 1
0

19

 

Where ( )k
k dI

s
s

k

1

0

1
1  and ( )m

m
s

I ds
m

1
1

0

1
1

1
 

When 𝑚 = 2 we drive Adams-Moulton Two-Step method 

Consider ( , ).i i if f x y1 1  

( )

( )

( )

( ) ( ) , , .

( ) ( )

,

( )

( ). ( ( ))

.

( ( ))

. ( , ( ))

(

k
i i i i k i i m

k

i i i i i

i i

i i i i i i

y x y x h f x y I h f μ y μ I

y x y x h I f I f I f

s
h f μ y μ ds

h
y x h f f f f μ y μ

y x

2
4 3

1 1 1
0

2
1 0 1 1 1 2 1

1
4 3

0

4
2 31 1

1 1 12 12

1

3

24

( )

( )

) ,

( ) ,

. ( ( ))

. ( ( ))

i i i i i i i i i

i i i i i i

h
h f f f f f f f μ y μ

h
y x f f f

h
f μ y μ

4
31

1 1 1 11

4

2

3
1 1

2
24

8
2412

 

 

Adams-Moulton Two-Step Implicit Method 

,

( , ) ( , ) ( , )i i i i i i i i

w α w α

h
w w f x w f x w f x w

0 1 1

1 1 1 1 15 8
12

               (25) 

where  𝑖 = 1, 2, 3, . . . , 𝑁 −  1.  

The local truncation error is   ( )( , ( ))i i iτ f μ y μ
h 3

1

3

24
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for some    ,i i iμ x x1 1  

 

Adams-Moulton Three-Step Implicit Method 

, ,

( , ) ( , ) ( , ) ( , )i i i i i i i i i i

w α w α w α

h
w w f x w f x w f x w f x w

0 1 1 2 2

1 1 1 1 1 2 29 19 5
24

 (26) 

where   𝑖 = 2, 3, . . . , 𝑁 −  1.  

The local truncation error is   ( )( , ( ))i i i
h

τ f μ y μ
4

4
1

19

720
 

for some ,i i iμ x x2 1  

 

 

Adams-Moulton Four-Step Implicit Method 

 
, , ,

[ ( , ) ( , ) ( , )

( , ) ( , )]

0 1 1 2 2 3 3

1 1 1 1 1

2 2 3 3

251 646 264
720

106 19

i i i i i i i i

i i i i

w α w α w α w α

h
w w f x w f x w f x w

f x w f x w

 (27) 

where  𝑖 = 3, 4, . . . , 𝑁 −  1.  

The local truncation error is   ( )( , ( ))i i i
h

τ f μ y μ
5

5
1

3

160
 

for some    ,i i iμ x x3 1  

 

It is interesting to compare an m-step Adams-Bashforth explicit method with an        

(𝑚 − 1) −step Adams-Moulton implicit method. Both involve m evaluations of f per 

step, and both have the terms ( , )
m m

i if μ μ h1
 in their local truncation errors. In 

general, the coefficients of the terms involving f in the local truncation error are smaller 

for the implicit methods than for the explicit methods. This leads to greater stability 

and smaller round-off errors for the implicit methods. 

 

Example 11  
Consider the initial-value problem 

𝑦′ =  𝑦 − 𝑥2  +  1, 0 ≤ 𝑥 ≤  2, 𝑦(0)  =  0.5. 
Use the exact values given from 𝑦(𝑥) = (𝑥 +  1)2 − 0.5𝑒𝑥 as starting values and          

h = 0.2 to compare the approximations from 

(a)  By the explicit Adams-Bashforth four-step method and  

(b) The implicit Adams-Moulton three-step method. 

 

Solution  

(a) The Adams-Bashforth method has the difference equation 
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, , ,

( , ) ( , ) ( , ) ( , )i i i i i i i i i i

w α w α w α w α

h
w w f x w f x w f x w f x w

0 1 1 2 2 3 3

1 1 1 2 2 3 355 59 37 9
24

 

For 𝑖 = 3, 4, . . . , 9.  

When simplified using 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 +  1,      ℎ =  0.2,  

       [   .     .   .     .     .     . ]i i i i iw w w w w i i21
1 1 1 2 324

35 11 8 7 4 1 8 0 192 0 192 4 736  

  

(b) The Adams-Moulton method has the difference equation 

, ,[ ( ) ( ) ( ) (x )], , ,h
i i i i i i i i i iw w f x w f x w f x w f w1 1 1 1 1 2 224

9 19 5

 

 for  𝑖 = 2, 3, . . . , 9. This reduces to 

 

. . . . . . .[ ]i i i i iw w w w w i i21
1 1 1 224

1 8 27 8 0 2 0 192 0 192 4 736  

 

 To use this method explicitly, we need to solve the equation explicitly solve for  iw 1  

This gives 

 

.
. . . .[ . ],i i i iw w w w i i21

1 1 222 2
27 8 0 2 0 192 0 192 4 736   

for  𝑖 = 2, 3, . . . , 9. 

 

The results in Table (9) were obtained using the exact values from  

𝑦(𝑥) = (𝑥 +  1)2 − 0.5𝑒𝑥 for       , , ,α α α1 2      and α3  in the explicit Adams-

Bashforth case and for , ,α α1 , and α2  in the implicit Adams-Moulton case. Note that 

the implicit Adams-Moulton method gives consistently better results. 

 

xi Exact wi AB Error AM Error 

0.0 0.5000000     

0.2 0.8292986     
0.4 1.2140877     

0.6 1.6489406   1.6489341 0.0000065 

0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160 
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293 

1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478 

1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731 
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071 
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527 

2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132 

Table (9) 
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Predictor-Corrector Methods 

In Example 9 the implicit Adams-Moulton method gave better results than the explicit 

Adams-Bashforth method of the same order. Although this is generally the case, the 

implicit methods have the inherent weakness of first having to convert the method 

algebraically to an explicit representation for iw 1  . This procedure is not always 

possible, as can be seen by considering the elementary initial-value problem 

𝑦′ = 𝑒𝑦 , 0 ≤ 𝑥 ≤  0.25, 𝑦(0)  =  1. 
Because 𝑓(𝑡, 𝑦)  =  𝑒𝑦, the three-step Adams-Moulton method has 

                     i i i iw w w wh
i iw w e e e e1 1 2

1 24
9 19 5    

as its difference equation, and this equation cannot be algebraically solved for iw 1 . 

We could use Newton’s method or the secant method to approximate iw 1 , but this 

complicates the procedure considerably. In practice, implicit multistep methods are not 

used as described above. Rather, they are used to improve approximations obtained by 

explicit methods. The combination of an explicit method to predict and an implicit to 

improve the prediction is called a predictor-corrector method. 

Consider the following fourth-order method for solving an initial-value problem. The 

first step is to calculate the starting values  , ,w w w0 1 2and w 3  for the four-step explicit 

Adams-Bashforth method. To do this, we use a fourth-order one-step method, the 

Runge-Kutta method of order four. The next step is to calculate an approximation, 

pw 4  , to ( )y x 4  using the explicit Adams-Bashforth method as predictor: 

 

, , , ,[ ( ) ( ) .( ) ( )]h
pw w f x w f x w f x w f x w4 3 3 3 2 2 1 1 0 024

55 59 37 9   

 

This approximation is improved by inserting w4p in the right side of the three-step 

implicit Adams-Moulton method and using that method as a corrector. This gives 

 

, , , ,[ ( ) ( ) ( ( )].)h
pw w f x w f x w f x w f x w4 3 4 4 3 3 2 2 1 124

9 19 5   

 

The only new function evaluation required in this procedure is ,( )pf x w4 4  in the 

corrector equation; all the other values of f have been calculated for earlier 

approximations. 

The value w 4  is then used as the approximation to ( )y x 4 , and the technique of using 

the Adams-Bashforth method as a predictor and the Adams-Moulton method as a 

corrector is repeated to find pw5 andw 5 , the initial and final approximations to ( )y x5     

This process is continued until we obtain an approximation wc to (x ) ( ).Ny y b   

Improved approximations to ( )iy x 1  might be obtained by iterating the Adams-

Moulton formula, but these converge to the approximation given by the implicit 

formula rather than to the solution ( )iy x 1 . Hence it is usually more efficient to use 

a reduction in the step size if improved accuracy is needed.  
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Example 12  

Apply the Adams fourth-order predictor-corrector method with h = 0.2 and starting 

values from the Runge-Kutta fourth order method to the initial-value problem 

𝑦′ =  𝑦 − 𝑥2  +  1, 0 ≤ 𝑥 ≤  2, 𝑦(0)  =  0.5. 
Solution  

This is continuation and modification of the problem considered in Example 9 

at the beginning of the section. In that example we found that the starting 

approximations from Runge-Kutta are 

. , .( ) ( ) . ( . ), . ,y w y w y w0 1 20 0 5 0 2 0 8292933 0 4 1 2140762  and 

( ). . .y w30 6 1 6489220  and the fourth-order Adams-Bashforth method gave 

.

.

( ) ( ( ) ( ) ( ) ( ))

( ( )

. . , . , . , ,

. . ,  ( )

( )

. . ,  .

. ,  . ( ))

( ( ) (

,  .

. . . .

py w w f w f w f w f w

f f

f f

0 2
4 3 3 2 1 024

0 2
24

0 8 55 0 6 59 0 4 37 0 2 9 0

1 6489220 55 0 6 1 6489220 59 0 4 1 2140762

37 0 2 0 8292933 9 0 0 5

1 6489220 0 0083333 55 2 2889220 59 2 0540762) ( )

(

.

. )) . .

37 1 7892933

9 1 5 2 1272892

  

 

We will now use w4p as the predictor of the approximation to 𝑦(0.8) and determine 

the corrected value w4, from the implicit Adams-Moulton method. This gives 

 

.

.

[ . ,

( )

( ) ( ) ( ). , . , . ,( )]p

y w

w f w f w f w f w

4

0 2
3 4 3 2 124

0 8

9 0 8 19 0 6 5 0 4 0 2
 

.. . ,  . . ,  .

. ,  . . ,

( ( ) ( )

( ) ( )) .

f f

f f

0 2
24

1 6489220 9 0 8 2 1272892 19 0 6 1 6489220

5 0 4 1 2140762 0 2 0 8292933

 

( ( ) ( )

( )

. . . .

. . .( ))

1 6489220 0 0083333 9 2 4872892 19 2 2889220

5 2 0540762 1 7892933 2 1272056
  

Now we use this approximation to determine the predictor, pw5 , for 𝑦(1.0) as 

.

.

.

. , . , . , .

( )

( ( ) ( ) ( ) ( ),

. .

)

( ( ) ( )

( )

,  . . ,  .

. ,  . . ,  .

.

( )

.

)

( ( ).

py w

w f w f w f w f w

f f

f f

5

0 2
4 4 3 2 124

0 2
24

1 0

55 0 8 59 0 6 37 0 4 9 0 2

2 1272056 55 0 8 2 1272056 59 0 6 1 6489220

37 0 4 1 2140762 9 0 2 0 8292933

2 1272056 0 0083333 55 2 4872056 59( ) ( ). .

.).( )

2 2889220 37 2 0540762

9 1 7892933 2 6409314
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 and correct this with 
.

.

( ) ( ) ( ) ( ) ( ). [ . , . , . , . , ]

. . ,  . . ,  .

. ,  . . ,  . ))

 .   . .

( ( ) ( )

( )

( ( )  

(

( .

py w w f w f w f w f w

f f

f f

0 2
5 5 4 3 224

0 2
24

1 0 4 9 1 0 19 0 8 5 0 6 0 4

2 1272056 9 1 0 2 6409314 19 0 8 2 1272892

5 0 6 1 6489220 0 4 1 2140762

2 1272056 0 0083333 9 2 6409314 19 2 ) ( )

(

 .

. )  .)

4872056 5 2 2889220

2 0540762 2 6408286

 

 In Example 9 we found that using the explicit Adams-Bashforth method alone 

produced results that were inferior to those of Runge-Kutta. However, these 

approximations to 𝑦(0.8)and 𝑦(1.0) are accurate to within 

 

       |2.1272295 − 2.1272056| = 2.39 × 10−5  

and |2.6408286 − 2.6408591| = 3.05 × 10−5. 

 

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to 

within 

 

       |2.1272027 − 2.1272892| = 2.69 × 10−5  

and |2.6408227 − 2.6408591| = 3.64 × 10−5. 

 

The remaining predictor-corrector approximations were generated using Algorithm 5.4 

and are shown in Table (10) 

ix   ( )i iy y x   iw   i iy w   

0.0 0.5000000 0.5000000 0 

0.2 0.8292986 0.8292933 0.0000053 

0.4 1.2140877 1.2140762 0.0000114 

0.6 1.6489406 1.6489220 0.0000186 

0.8 2.1272295 2.1272056 0.0000239 

1.0 2.6408591 2.6408286 0.0000305 

1.2 3.1799415 3.1799026 0.0000389 

1.4 3.7324000 3.7323505 0.0000495 

1.6 4.2834838 4.2834208 0.0000630 

1.8 4.8151763 4.8150964 0.0000799 

2.0 5.3054720 5.3053707 0.0001013 

Table (10)  
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Stability 

A number of methods have been presented in this chapter for approximating the 

solution to an initial-value problem. Although numerous other techniques are available, 

we have chosen the methods described here because they generally satisfied three 

criteria: 

• Their development is clear enough so that you can understand how and why they 

work. 

• One or more of the methods will give satisfactory results for most of the problems 

that are encountered by students in science and engineering. 

• Most of the more advanced and complex techniques are based on one or a 

combination of the procedures described here. 

 

One-Step Methods 

In this section, we discuss why these methods are expected to give satisfactory results 

when some similar methods do not. Before we begin this discussion, we need to present 

two definitions concerned with the convergence of one-step difference-equation 

methods to the solution of the differential equation as the step size decreases. 

 

Definition (6)5.18  

A one-step difference-equation method with local truncation error ( )iτ h  at the ith step 

is said to be consistent with the differential equation it approximates if   

 

lim   .( )i
h i N

Max τ h
0 1

0   

 

Note that this definition is a local definition since, for each of the values ( )iτ h , we 

are assuming that the approximation iw 1  and the exact solution ( )iy x 1  are the 

same. A more realistic means of analyzing the effects of making h small is to determine 

the global effect of the method. This is the maximum error of the method over the 

entire range of the approximation, assuming only that the method gives the exact result 

at the initial value. 

 

Definition (7) 

 A one-step difference-equation method is said to be convergent with respect to the 

differential equation it approximates if 

 

lim  ( )  .i i
h i N

Max w y x
0 1

0  

 

where ( )iy x denotes the exact value of the solution of the differential equation and 

iw  is the approximation obtained from the difference method at the ith step. 

A method is convergent if the solution to the difference equation approaches the 

solution to the differential equation as the step size goes to zero. 
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Example 13  

Show that Euler’s method is convergent. 

Solution 

 the error-bound formula for Euler’s method,  is  

(b )|  ( )|
 

  L
k k

k N

ahM
y w e

L
Max

1
1

2
 

However, M, L, a, and b are all constants and 

(b )lim | | l )i (m
 




   L a

h hk N
k k

hM
Max y w e

L0 01
1 0

2
 

So Euler’s method is convergent with respect to a differential equation satisfying the 

conditions of this definition. The rate of convergence is 𝑂(ℎ). A consistent one-step 

method has the property that the difference equation for the method approaches the 

differential equation when the step size goes to zero. So the local truncation error of a 

consistent method approaches zero as the step size approaches zero. The other error-

bound type of problem that exists when using difference methods to approximate 

solutions to differential equations is a consequence of not using exact results. In 

practice, neither the initial conditions nor the arithmetic that is subsequently performed 

is represented exactly because of the round-off error associated with finite-digit 

arithmetic.  

 

Theorem (5):  
Suppose the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
is approximated by a one-step difference method in the form 

𝑤0 =  𝛼, 𝑤𝑖+1  =  𝑤𝑖 +  ℎ𝜑(𝑥𝑖 , 𝑤𝑖 , ℎ). 
Suppose also that a number ℎ0  >  0 exists and that 𝜑(𝑥, 𝑤, ℎ) is continuous and 

satisfies a Lipschitz condition in the variable w with Lipschitz constant L on the set 

𝐷 =  {(𝑥, 𝑤, ℎ) | 𝑎 ≤  𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑤 <  ∞, 0 ≤  ℎ ≤ ℎ0}. 
Then 

(i) The method is stable; 

(ii) The difference method is convergent if and only if it is consistent, which is 

equivalent to   𝜑(𝑥, 𝑦, 0)  =  𝑓 (𝑥, 𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≤ 𝑥 ≤  𝑏; 
(iii) If a function τ exists and, for each 𝑖 =  1, 2, . . . , 𝑁, the local truncation error 

𝜏𝑖(ℎ) satisfies |𝜏𝑖(ℎ) |  ≤  𝜏(ℎ) whenever 0 ≤  ℎ ≤  ℎ0, then 

|𝑦(𝑥𝑖)  − 𝑤𝑖|  ≤
 𝜏(ℎ)

𝐿
𝑒𝐿(𝑥𝑖−𝑎). 

 

Example 14  

The Modified Euler method is given by  

,

, ,  , ,

for ,  ,. . 

( )

. .

( )

,

(h
i i i i i i i i

w α

w w f x w f x w hf x w

i N

0

1 12

0 1 1

  



40 | P a g e 
 

   Verify that this method is stable by showing that it satisfies the hypothesis of 

Theorem (5). 

 

Solution  
For this method, 

, , ( ,( (  ) )i i i i i iφ f x w f x w hf x w1
12

 

If f satisfies a Lipschitz condition on {(𝑥, 𝑤) | 𝑎 ≤ 𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑤 <  ∞} in 

the variable w with constant L, then, since 

, , , ,

, ,  

( ) ( )

( ) ( , , ,  ,( ) ( ) ( ( )

φ t w h φ t w h

f x w f x h w hf x w f x w f x h w hf x w1 1
2 2

 

the Lipschitz condition on f leads to 

 

( ) ( )

( ) ( ( ) ( ) ( ( )

( ) ( ) ( ( ) ( (

( ) (

( )

, , , ,

, ,  , , ,  ,

, , ,  , ,  , )

 ,  , )

 , ( , )

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1

1
2

2

φ t w h φ t w h

f x w f x h w hf x w f x w f x h w hf x w

f x w f x w f x h w hf x w f x h w hf x w

L w w L w hf x w w hf x w

L w w L w w hf x w hf x w

L w

L

)

) )

21
2

1
2

2 21 1
2 2

w L w w w

L w w

hL w

hL w L hLw w w

  

Therefore, φ satisfies a Lipschitz condition in w on the set 

𝐷 =  {(𝑥, 𝑤, ℎ) | 𝑎 ≤  𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑤 <  ∞, 0 ≤  ℎ ≤ ℎ0}. 

for any ℎ0 > 0with constant    ' hL L L21
2

. 

Finally, if f is continuous on  {(𝑥, 𝑤) | 𝑎 ≤ 𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑤 <  ∞} 
then φ is continuous on 

𝐷 =  {(𝑥, 𝑤, ℎ) | 𝑎 ≤  𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑤 <  ∞, 0 ≤  ℎ ≤ ℎ0}. 
so Theorem (5) implies that the Modified Euler method is stable. Letting h = 0, we 

have  

 

( ) ( ) ( (, ,  , ,  ,) (, ),)  φ t w f x w f x w f x w f x w1 1
2 2

0 0 0・   

so the consistency condition expressed in Theorem (5), part (ii), holds. Thus, the 

method is convergent. Moreover, we have seen that for this method the local truncation 

error is 𝑂(ℎ2), so the convergence of the Modified Euler method is also 𝑂(ℎ2). 
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Multistep Methods 

For multistep methods, the problems involved with consistency, convergence, and 

stability are compounded because of the number of approximations involved at each 

step. In the one-step methods, the approximation 𝑤𝑖+1 depends directly only on the 

previous approximation 𝑤𝑖, whereas the multistep methods use at least two of the 

previous approximations, and the usual methods that are employed involve more. 

The general multistep method for approximating the solution to the initial-value 

problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤  𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼,    (28) 
has the form 

     ,      , . . . ,    ,

              

  ,  , , , . . . , ,

m m

i m i m i i m

i i i i m

w α w α w α

w a w a w a w

hF x h w w w

0 1 1 1 1

1 1 2 1 0 1

1 1 29

・・・   

 

for each 𝑖 =  𝑚 −  1,𝑚, . . . , 𝑁 −  1, where ,  , ...,m ma a a1 2 0are constants and, as 

usual,ℎ =  (𝑏 −  𝑎)/𝑁 and .ix a ih  The local truncation error for a multistep 

method expressed in this form is 

 

( ) ( ) ( )

, , ,

( )

( ( ) ( ) (x ),. . ., ,)

1 1 0 1
1

1 1

i m i i m
i

i i i i m

y x a y x a y x
τ h

h
F x h y x y x y

...

  

 

for each 𝑖 =  𝑚 −  1,𝑚, . . . , 𝑁 −  1. As in the one-step methods, the local truncation 

error measures how the solution y to the differential equation fails to satisfy the 

difference equation. 

For the four-step Adams-Bashforth method,  

The local truncation error is    

   ( )( , ( ))i i i
h

τ f μ y μ
4

4
1

251

720
      for some   ,i i iμ x x3 1  

 

whereas the three-step Adams-Moulton method has local truncation error is 

     ( )( , ( ))i i i
h

τ f μ y μ
4

4
1

19

720
      for some    ,i i iμ x x2 1  

 

provided, of course, that y ∈ C5[a, b]. 

Throughout the analysis, two assumptions will be made concerning the function F: 

• If f ≡ 0 (that is, if the differential equation is homogeneous), then F ≡ 0 also. 

• F satisfies a Lipschitz condition with respect to{ }jw  , in the sense that a constant L 

exists and,  
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for every pair of sequences  and{ } { }jj
N N
j jv v0 0   

and for 𝑖 =  𝑚 −  1,𝑚, . . . , 𝑁 −  1, we have 

 

, , ,. . ., , , ,.| ( ) (  . ., ) | | |  .
m

i i m i ji i i m i i j
j

F x h v v F x h v v L v v1 1 11 1 1
0

  

The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of 

these conditions, provided f satisfies a Lipschitz condition. 

The concept of convergence for multistep methods is the same as that for one-step 

methods. 

• A multistep method is convergent if the solution to the difference equation 

approaches the solution to the differential equation as the step size approaches zero. 

This means that 

 

| ( ) |lim    i i
h i N

Max w y x
0

0 . 

 

For consistency, however, a slightly different situation occurs. Again, we want a 

multistep method to be consistent provided that the difference equation approaches the 

differential equation as the step size approaches zero; that is, the local truncation error 

approaches zero at each step as the step size approaches zero. The additional condition 

occurs because of the number of starting values required for multistep methods. Since 

usually only the first starting value, w0 = α, is exact, we need to require that the errors 

in all the starting values { }iα  approach zero as the step size approaches zero. So 

 

lim for all ,  ,. . .,i
h

τ i m m N
0

0 1                                 (30) 

And  lim ( ) for all , ,,i i
h

α y x i m
0

0 1 2 1                   (31) 

must be true for a multistep method in the form (5.55) to be consistent. Note that (31) 

implies that a multistep method will not be consistent unless the one-step method 

generating the starting values is also consistent. 

The following theorem for multistep methods is similar to Theorem (5), part (iii), and 

gives a relationship between the local truncation error and global error of a multistep 

method. It provides the theoretical justification for attempting to control global error 

by controlling local truncation error. 8. 

 

Theorem (6): 

Suppose the initial-value problem 

𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼, 
is approximated by an explicit Adams predictor-corrector method with an m-step 

Adams-Bashforth predictor equation 

 

[ ( ) ( , ], ,)i i m i i i m i mw w h b f x w b f x w1 1 0 1 1...   
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With local truncation error ( ),iτ h1  and an (𝑚 −  1) −step implicit Adams-Moulton 

corrector equation 

 

( ) ( [ , ,

 

)

( )],

m mi i i i i i

i m i m

w w h b f x w b f x w

b f x w

1 21 1

0 2 2...
 

 

with local truncation error ( ),iτ h1 . In addition, suppose that , and( ) ( ),yf x y f x y  

are continuous  

on  𝐷 =  {(𝑥, 𝑦) | 𝑎 ≤ 𝑥 ≤  𝑏 𝑎𝑛𝑑 − ∞ <  𝑦 <  ∞} 
and that ,( )yf x y  is bounded. Then the local truncation error ( )iσ h1  of the 

predictor-corrector method is 

( )
( ) ( ) ( )

,
,  i i

i mi i
f x θ

σ h τ h τ h b
y
1 1

1 11 1   

Where iθ 1 is a number between zero and ( ).ihτ h1   

Moreover, there exist constants𝑘1and 𝑘2 such that 

 

( )
| ( ) | (x ( ) ,) ik x a

i i j
j m

jw y x Max w y k σ h e 2
1

0 1
 

 

Where  ( ) | ( ) | .j
j N

σ h Max σ h  

Before discussing connections between consistency, convergence, and stability for 

multistep methods, we need to consider in more detail the difference equation for a 

multistep method. In doing so, we will discover the reason for choosing the Adams 

methods as our standard multistep methods. 

Associated with the difference equation (29) given at the beginning of this discussion, 

 

     ,      , . . . ,    ,

              

  ,  , , , . . . , ,

m m

i m i m i i m

i i i i m

w α w α w α

w a w a w a w

hF x h w w w

0 1 1 1 1

1 1 2 1 0 1

1 1

・・・  

 

is a polynomial, called the characteristic polynomial of the method, given by 

.m m m
m mP λ λ a λ a λ a λ a1 2

1 2 1 0...                      (32)  

The stability of a multistep method with respect to round-off error is dictated the by 

magnitudes of the zeros of the characteristic polynomial. To see this, consider applying 

the standard multistep method (5.55) to the trivial initial-value problem 

 

𝑦′ ≡  0, 𝑦(𝑎)  =  𝛼,𝑤ℎ𝑒𝑟𝑒 𝛼 ≠  0.                                                      (33) 
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This problem has exact solution  𝑦(𝑥)  ≡  𝛼. We can see that any multistep method 

will, in theory, produce the exact solution 𝑤𝑛  =  𝛼 for all n. The only deviation from 

the exact solution is due to the round-off error of the method. The right side of the 

differential equation in (33) has  𝑓 (𝑥, 𝑦)  ≡  0, so by assumption (1), we have 

, , , ,. . ., ) ( i i i i mF x h w w w1 2 1 0  

in the difference equation (29). As a consequence, the standard form of the difference 

equation becomes 

 

.i m i m i i mw a w a w a w1 1 2 1 0 1...       (34) 

 

Suppose λ is one of the zeros of the characteristic polynomial associated with (29). 

Then n nw λ  for each n is a solution to (33) since 

 

... [ ] i i i i m i m m m
m m mλ a λ a λ a λ λ λ a λ a1 1 1 1 1

1 2 0 1 0 0...  . 

 

In fact, if , ,. . ., mλ λ λ1 2  are distinct zeros of the characteristic polynomial for (29), it 

can be shown that every solution to (34) can be expressed in the form 
m n

n i i
i

w c λ
1

 ,                                     (35) 

for some unique collection of constants , ,. . ., .mc c c1 2   

Since the exact solution to (33) is 𝑦(𝑡)  =  𝛼, the choice n nw α , for all n, is a 

solution to (34). Using this fact in (34) gives 

[ ].m m m mα αa αa αa α a a a1 2 0 1 2 00 1... ...  This implies 

that λ = 1 is one of the zeros of the characteristic polynomial (32). We will assume that 

in the representation (35) this solution is described by  and ,λ c α1 11  so 

all solutions to (33) are expressed as 

 
m n

n i i
i

w α c λ
2

 .                                                         (36) 

 

If all the calculations were exact, all the constants , ,. . ., mc c c2 3  would be zero. In 

practice, the constants , ,. . ., mc c c2 3 are not zero due to round-off error. In fact, the 

round-off error grows exponentially unless iλ 1 | for each of the roots , ,. . ., mλ λ λ2 3  

. The smaller the magnitude of these roots, the more stable the method with respect to 

the growth of round-off error. In deriving (36), we made the simplifying assumption 

that the zeros of the characteristic polynomial are distinct. The situation is similar when 

multiple zeros occur. For example, if k k k pλ λ λ1 ...  for some k and p, it 

simply requires replacing the sum 

   1 1 ...n n n
k k k k k p k pc c c                                    
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In (36) with 

( ) ... ( )...( )
n pn n n

k k k k k k k p kc λ c nλ c n n λ c n n n p λ1 2
1 2 1 1 1 .(37) 

 

Although the form of the solution is modified, the round-off error 

if | 1|k    still grows exponentially. 

Although we have considered only the special case of approximating initial-value 

problems of the form (33), the stability characteristics for this equation determine the 

stability for the situation when 𝑓(𝑥, 𝑦) is not identically zero. This is because the 

solution to the homogeneous equation (33) is embedded in the solution to any equation. 

The following definitions are motivated by this discussion. 

 

 

Definition (8)  

 Let 1 2, ,. . ., m    denote the (not necessarily distinct) roots of the characteristic 

equation 
m m m

m mP λ λ a λ a λ a λ a1 2
1 2 1 0 0...  

Associated with the multistep difference method 

 

0 1 1 1 1

1 1 2 1 0 1 1 1

, ,. . .,

, , , ,. . . .( ),

m m

i m i m i i m i i i i m

w w w

w a w a w a w hF x h w w w

   

        

  

    ・ ・ ・
 

 

 If | 1|i   , for each 𝑖 = 1, 2, . . . , 𝑚, and all roots with absolute value 1 are simple roots, 

then the difference method is said to satisfy the root condition. 

 

Definition (9)  

 (i) Methods that satisfy the root condition and have λ = 1 as the only root of the 

characteristic equation with magnitude one are called strongly stable. 

(ii) Methods that satisfy the root condition and have more than one distinct root with 

magnitude one are called weakly stable. 

(iii) Methods that do not satisfy the root condition are called unstable. 

Consistency and convergence of a multistep method are closely related to the round-

off stability of the method. The next theorem details these connections. For the proof 

of this result and the theory on which it is based. 

 

Theorem (7)  
A multistep method of the form 

0 1 1 1 1

1 1 2 1 0 1 1 1

, ,. . .,

, , , ,. . . .( ),

m m

i m i m i i m i i i i m

w w w

w a w a w a w hF x h w w w

   

        

  

    ・ ・ ・
 

is stable if and only if it satisfies the root condition. Moreover, if the difference method 

is consistent with the differential equation, then the method is stable if and only if it is 

convergent 
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Example 15 

 The fourth-order Adams-Bashforth method can be expressed as 

1 1 3

1 3

1 1 2 2 3 324

, , , ,. . ., ,  

where

, , , ,. . .,

55 , 59 , 37 , 9 ,

( )

( )

[ ( ) ( ) ( ) ( )];

i i i i i i

i i i i

h
i i i i i i i i

w w hF x h w w w

F x h w w w

f x w f x w f x w f x w

  

 

     

 

   

  

Show that this method is strongly stable. 

 

Solution  

In this case we have m = 4, 0 1 20, 0, 0a a a    , and 3 1a   , so the characteristic 

equation for this Adams-Bashforth method is 

  4 3 30 )1 .(P           This polynomial has roots 1 2 31, 0, 0      , and

4 0   . Hence it satisfies the root condition and is strongly stable. 

The Adams-Moulton method has a similar characteristic polynomial, with zeros

1 2 31, 0,  and 0      , and is also strongly stable. 

 

Example 16  
Show that the fourth-order Milne’s method, the explicit multistep method given by 

 

 4
1 3 1 1 2 23

( ) (2 , ) )2 ,(,h
i i i i i i iw w f x wi f x w f x w          

 

Satisfies the root condition, but it is only weakly stable. 

Solution  

The characteristic equation for this method,   40 1P      , has four roots with 

magnitude one: 1 2 3 41, 1, ,  andi i          . Because all the roots have 

magnitude 1, the method satisfies the root condition. However, there are multiple roots 

with magnitude 1, so the method is only weakly stable. 

 

Example 17  
Apply the strongly stable fourth-order Adams-Bashforth method and the weakly stable 

Milne’s method with h = 0.1 to the initial-value problem 

' 6 6,  ( )0 1, 0 2y y x y       , which has the exact solution 
61( ) xy x e   . 

 

Solution  
The results in Table (11) show the effects of a weakly stable method versus a strongly 

stable method for this problem. 
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ix   Exact

( )iy x   

Adams-

Bashforth 

Method iw   

Error

| |i iy w   

Milne’s 

Method iw  

Error

| |i iy w  

0.1 1.5488116     

0.2 1.3011942     

0.3 1.1652989     

0.4 1.0907180 1.0996236 8.906 × 10−3 1.0983785 7.661 × 10−3 

0.5 1.0497871 1.0513350 1.548 × 10−3 1.0417344 8.053 × 10−3 

0.6 1.0273237 1.0425614 1.524 × 10−2 1.0486438 2.132 × 10−2 

0.7 1.0149956 1.0047990 1.020 × 10−2 0.9634506 5.154 × 10−2 

0.8 1.0082297 1.0359090 2.768 × 10−2 1.1289977 1.208 × 10−1 

0.9 1.0045166 0.9657936 3.872 × 10−2 0.7282684 2.762 × 10−1 

1.0 1.0024788 1.0709304 6.845 × 10−2 1.6450917 6.426 × 10−1 

Table (11) 
 

The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order 

predictor-corrector technique over the Milne-Simpson method of the same order is that 

both the Adams-Bashforth and Adams-Moulton methods are strongly stable. 

They are more likely to give accurate approximations to a wider class of problems than 

is the predictor-corrector based on the Milne and Simpson techniques, both of which 

are weakly stable. 

 

EXERCISE (6) 

(1) Consider the differential equation   𝑦′ =  𝑓 (𝑥, 𝑦), 𝑎 ≤  𝑥 ≤  𝑏, 𝑦(𝑎)  =  𝛼. 

(a)  Show that 
( ) ( )  ( )

'')' '( ii
i

iy y x y x h
y y ξ

h

x
x

2
1 2

1
3 4

2 3
  for 

some ξ , where 2 i i ix x    . 

(b)  Part (a) suggests the difference method

2 14 3 2  , ,  for 0,  1,. . ., 2.( )i i i i iw w w hf x w i N       Use this method 

to solve ' 1 ,  0 1, )0 0(y y x y      , with h = 0.1. Use the starting value

0 0w   and
0.1

1 1( ) 1w y x e    . 

(c) Repeat part (b) with h = 0.01 and 
0.01

1 1( ) 1w y x e    . 

(d) Analyze this method for consistency, stability, and convergence. 

 

(2) Given the multistep method 
3 1

1 1 22 2

0 1 2

 3 3  , ,  for 2,. . ., 1,

with starting value

(

s , , :

)i i i i i iw w w w hf x w i N

w w w


       

 

(a)  Find the local truncation error. 

(b)  Comment on consistency, stability, and convergence. 
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(3) Investigate stability for the difference method   

1 1 1 1

0 1

4 5 2 , 2 , ,

for 1,  2,. . ., 1,  with starting value

[ (

s , .

) ( )]i i i i i i iw w w h f x w hf x w

i N w w

       

 
 

 

Multistep Methods 

In previous sections we have discussed numerical procedures for approximating the 

solution of the initial value problem 

0 0( ) ( )' , , ,  (1)y f x y y t y   

in which data at the point nx x  are used to calculate an approximate value of the 

solution 1( )ny x  at the next mesh point 1nx x . In other words, the calculated 

value of y at any mesh point depends only on the data at the preceding mesh point. 

Such methods are called one-step methods. However, once approximate values of 

the solution ( )ny x have been obtained at a few points beyond 0x , it is natural to ask 

whether we can make use of some of this information, rather than just the value at 

the last point, 0x  calculate the value of y at the next point. Specifically, if 

1 1 2 2 at ,  at ,. . ., atn ny x y x y x  are known, how can we use this information to 

determine 1ny  at 1nx ? Methods that use information at more than the last mesh 

point are referred to as multistep methods. In this section we will describe two types 

of multistep methods: 

Adams methods and backward differentiation formulas. Within each type, we can 

achieve various levels of accuracy, depending on the number of preceding data points 

that are used. For simplicity, we will assume throughout our discussion that the step 

size h is constant. 

 

Adams Methods.  

Integrate (1) in the interval 1[ , ]n nx x  we have 

1

1 ( , )
n

n

x

n n n n
x

y y f x y dx   

1

1 ( , ) (2)
n

n

x

n n n n
x

y y f x y dx  

 

Where ny  is the approximate solution of the initial value problem (1) at the point

nx . The basic idea of an Adams method is to approximate ( , )n nf x y by a 

polynomial ( )mP x  of degree m and to use the polynomial to evaluate the integral on 

the right side of equation (2).  

 

 

 



49 | P a g e 
 

Explicit schemes 

Two-step Adams-Bashforth method 

We derive the two-step Adams-Bashforth method, 

𝑦𝑛+1  =  𝑦𝑛  +  ℎ[𝑏1𝑓(𝑥𝑛, 𝑦𝑛) + 𝑏2𝑓(𝑥𝑛−1, 𝑦𝑛−1)) 
The constants 𝑏1, and 𝑏2, are obtained by evaluating the integral from 𝑥𝑛 to 𝑥𝑛+1 of a 

polynomial 𝑃1(𝑥) that passes through 𝑓(𝑥𝑛, 𝑦𝑛) and𝑓(𝑥𝑛−1, 𝑦𝑛−1)  
Because we can write 

 

1 0 1 1 1 1
''( , ( ))

( , ) ( , ) ( , ) (x )(x )
2!

n n
n n n n n n n n

f λ y λ
P x y f x y L f x y L x x   

Where 

1
''( , ( ))

(x )(x )
2!

n n
n n

f λ y λ
E x x  is the truncation error and  

     1
0 1

1 1

( ) ( )
,

( ) ( )

n n

n n n n

x x x x
L L

x x x x
 

 

is the  Lagrange polynomials for the interpolation points 𝑥𝑛 and𝑥𝑛−1, and because 

our final method expresses 𝑦𝑛+1  as a linear combination of 𝑦𝑛 and values of f, it 

follows that the constants 𝑏1and 𝑏2, are the integrals of the Lagrange polynomials 

from 𝑥𝑛 to 𝑥𝑛+1 divided by h. 

So equation (2) becomes 

 

1

1 1
1

1
1

1

( ) ( )

( ) ( )
( , ) ( , )

n

n

n n

n n n n

x

n n n n n n
x

x x x x

x x x
y y f x y f x y d

x
x  

1 1

1 1 1
1

1 1

( ) ( )

( )
( ,

(
( )

)
) ,

n n

n n

x x

n n n n n n
x x

n n

n n n n

y y f x y f x y
x x x x

dx dx
x x x x

Put 

1 1

then and

( ) (x ) ( 1)

n

n

n n n n

x x sh

x x sh dx hds

x x x x x sh h h s

 

1 1

1 1 1

1 1

1 1 1
0 0

( 1)

( 1

( , ) ( , )

( , ) ( ,) )

n n

n n

x x

n n n n n n
x x

n n n n n n

y
h s sh

dy h s h df x y f x y

y y hf x y f

s
h h

s x syds h sd
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1

2
1

1 1

0

2

(
( 1)

2
, ) ( , )

2
n n n n n ny y h f x y f

s s
ds x y  

13
1 1 12 2

( , ) ( , )n n n n n ny y h f x y f x y  

 
We conclude that the two-step Adams-Bashforth method is 

 

1 1 12
3 ( , ) ( , ) (3)h

n n n n n ny y f x y f x y  

Finally we determine the local error by the equation 

1

1

31
3

0

''( , ( ))
( )( )

2!

''( , ( )) 5
( )( 1) ''( , ( ))

2! 12

k

k

x
n n

n n
x

n n
n n

f λ y λ
E x x x x

f λ y λ h
h s s ds f λ y λ

 

 

If we use trapezoidal integral by using the points 1 1( , ),( , )n n n nx y x y which in 

fact interpolation polynomial interpolate the function ( , )n nf x y at 

1 1( , ),( , )n n n nx y x y equation (2) becomes 

  

1 1 12
( , ) ( , ) (4)h

n n n n n ny y f x y f x y  

 

Predictor-corrector scheme 

When an explicit scheme is combined with an implicit scheme in this manner, we have 

the so called predictor-corrector scheme. The equation (3) is predictor calculation to 

equation (4) 

 

1 1 12
3 ( , ) ( , )

P h
n n n n n ny y f x y f x y                       (5) 

1 1 12
( , ) ( , )

C Ph
n n n n n ny y f x y f x y                   (6) 

--------------------------------------------------- 

 

Three-step Adams-Bashforth method 

We derive the three-step Adams-Bashforth method, 

𝑦𝑛+1  =  𝑦𝑛  +  ℎ[𝑏1𝑓(𝑥𝑛, 𝑦𝑛)  + 𝑏2𝑓(𝑥𝑛−1, 𝑦𝑛−1)  + 𝑏3𝑓(𝑥𝑛−2, 𝑦𝑛−2)): 
The constants 𝑏1, 𝑏2and 𝑏3, are obtained by evaluating the integral from 𝑥𝑛to 𝑥𝑛+1 of 

a polynomial 𝑃2(𝑥) that passes through 𝑓(𝑥𝑛, 𝑦𝑛), 𝑓(𝑥𝑛−1, 𝑦𝑛−1) and𝑓(𝑥𝑛−2, 𝑦𝑛−2). 
Because we can write 
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2 0 1 1 1 2 2 2

1 23

( , ) ( , ) ( , ) ( , )

'''( , )
(x )(x )(x )

3! h

n n n n n n n n

n n
n n n

P x y f x y L f x y L f x y L

f x y
x x x
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1 2
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2
1

1 1 2

1
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2 2 1

( )( )
,

( )( )

( )( )
,

( )( )

( )( )

( )( )

n n

n n n n

n n

n n n n

n n

n n n n

x x x x
L

x x x x

x x x x
L

x x x x

x x x x
L

x x x x

 

 

is the  Lagrange polynomials for the interpolation points 𝑥𝑛, 𝑥𝑛−1 and𝑥𝑛−2, and 

because our final method expresses 𝑦𝑛+1  as a linear combination of 𝑦𝑛 and values of 

f, it follows that the constants 𝑏1, 𝑏2and 𝑏3, are the integrals of the Lagrange 

polynomials from𝑥𝑛 to 𝑥𝑛+1 divided by h. 

Equation (2) becomes 

 

1

1

1

1
1

1 1
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1 2
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1 1 2
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( , )
)

( )( )
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(
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n

n

n

n

n

n

n n

n n n n

n n

n n n n

n

x

n n n n
x

x

n n
x

x

n
n

n n n n
n

x

x x x x
dx

x x x x

x x x x
dx

x x x

y y f x y

f x y

f x

x

x x x x
dx

x x x
y

x

 

 Put 

then and

n

n

x x sh

x x sh dx hds
 

1 1( ) (x ) ( 1)n n n nx x x x x sh h h s  
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1 1

1 1 2 2
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2 2
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(1)(2)

( )( 2) ( )( 1)
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(

n n n

n n n n

n n n n

nx x x x x sh h h s

s s
dy y hf x y

hf x y hf x y

s

s s s s
ds ds

 

 
We conclude that the three-step Adams-Bashforth method is 

 

1 1 1 2 212
23 ( , ) ( , ) 5 (16 , ) (6)h

n n n n n n n ny y f x y f x y f x y

 

Finally wee determine the local error by the equation 

 

1

1 2

4 3
1

4 ( )

0

'''( , )
(x )(x )(x )

3!

'''( , ( ))
( )( 1)(s 2) ( ( )

3
 ,

8
)

3!

k

k

x
n n

n n n
x

n
i

n
i

f x y
E x x x

f λ y λ
h fds μh μs ys

 

If we use Simpson integral by integrate the equation (1) on the interval  

1 1,n nx x  which in fact interpolation polynomial interpolate the function 

( , )n nf x y at three points 1 1( , ),( , )n n n nx y x y and 1 1( , )n nx y equation (2) 

becomes  

1 1 1 1 1 13
( , ) 2 ( , ) ( , ) (7)h

n n n n n n n ny y f x y f x y f x y

 

Adams-Moulton (AM) Methods 

The same approach can be used to derive an implicit Adams method, which is known 

as an Adams-Moulton method. The only difference is that because 𝑥𝑛+1 is an 

interpolation point. Because the resulting interpolating polynomial is of degree one 

greater than in the explicit case, the error in an 𝑚 − 𝑠𝑡𝑒𝑝 Adams-Moulton method is 

O(ℎ𝑚+1), as opposed to O(ℎ𝑚) for an 𝑚 − 𝑠𝑡𝑒𝑝 Adams-Bashforth method AM 

methods are implicit methods; in other words, they use information at 1nx   to compute

1ny   . Let us derive AM2, the second-order Adams-Moulton method. 

Again, like the AB method, we will use the Lagrange interpolating polynomial of 

degree 1, as a linear interpolation. However, instead of fitting the interpolant to f at nx  

and 1nx  , we will fit to f at nx  and 1nx  . Proceeding as for the AB2 case, we have 
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1 1 1 0 1 1
''( , ( ))

( , ) ( , ) ( , ) (x )(x )
2!

n n
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f λ y λ
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E x x  is the truncation error and  
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0 1
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( ) ( )
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L L

x x x x
 is the  Lagrange polynomials for the 

interpolation points 𝑥𝑛 and𝑥𝑛+1, 

1

1
1 1

1
1

1( ,
( )( )
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( )
( , )

(
( ,

)
)

n n

n n
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y y f

x x
x y f x y

Put 

 

1 1

1 1

1 1 1

then and
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( , ( , )
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)n n

n n

n

n

n n n

x x

n n n n n n
x x
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x x sh

x x sh dx hds

x x x x x sh h h s
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h
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1 1

1 1 1
0 0

( , ) ( , ) ( )1n n n n n ny y hf x y f x ys ds h s ds  

1

1 1 1

0

1
1 2 21

2

1
1

2( ) (1 )
( , ) ( , )

( , ) ( , )

2 2
n n n n n n

n n n n n n

s s
y y h f x y f x y

y y h f x x

ds

y f y

 

 
We conclude that the one-step Adams-Moulton method is 

 

1 1 12
( , ) ( , ) (3)h

n n n n n ny y f x y f x y  

We determine the local error by the equation 
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1

1

31
3

1
0

''( , ( ))
( )( )

2!

''( , ( ))
( )( 1) ''( , ( )) ,

2! 6

k

k

x
n n

n n
x

n n
n n n n n

f λ y λ
E x x x x

f λ y λ h
h s s ds f λ y λ x λ x

 

 

If we use trapezoidal integral by using the points 1 1( , ),( , )n n n nx y x y which in 

fact interpolation polynomial interpolate the function ( , )n nf x y at 

1 1( , ),( , )n n n nx y x y equation (2) becomes 

  

1 1 12
( , ) ( , ) (4)h

n n n n n ny y f x y f x y  

 

Notice that the order 2 AM method only requires the use of one previous step for the 

same 𝑂(ℎ3) LTE; again, the global error is 𝑂(ℎ2). In general the s order AM method 

requires s-1 steps, despite using the same polynomial degree as an s order AB 

method. This is the benefit of going implicit. Of course, we now have a linear system 

to solve if we want to compute 1ny  

 

AM3 

To derive Adam-Moulton Consider approximating the function ( , )n nf x y . in 

equation (2) by the following second degree Lagrange polynomial from equation (1), 

when 𝑚 = 2 

 

2 1 1 0 1 1 1 2

1 13

( , ) ( , ) ( , ) ( , )

'''( , )
(x )(x )(x )

3! h

n n n n n n n n

n n
n n n

P x y f x y L f x y L f x y L

f x y
x x x

  

 

Where  
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1 1 1 1 1 1
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1 1 1
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( )( ) ( )( )

( )( )
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n nn n

n n n n n n n n

n n

n n n n

x x x xx x x x
L L

x x x x x x x x

x x x x
L

x x x x

 

 

is the  Lagrange polynomials for the interpolation points 𝑥𝑛−1 , 𝑥𝑛 and𝑥𝑛+1,then 

equation (2) becomes 
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We conclude that the Two-Step Adams-Moulton method is 

 

1 1 1 1 112
5 ( , ) ( , ) ( ) (6)8 ,h

n n n n n n n ny y f x y f x y f x y  

We determine the local error by the equation 
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If we use Simpson integral by integrate the equation (1) on the interval  1 1,n nx x  

which in fact interpolation polynomial interpolate the function ( , )n nf x y at three 

points 1 1( , ),( , )n n n nx y x y and 1 1( , )n nx y equation (2) becomes  

1 1 1 1 1 13
( , ) 2 ( , ) ( , ) (7)h

n n n n n n n ny y f x y f x y f x y

 

Based on the general form of an AB method, we can now also write the general 

form of an AM method. We only need to adjust the indices so they go up to 

1nx  on the interpolating polynomial 

1

1 1 1
0

( , )
s

n n k n k n k
k

y y h B f x y  

 

Where 
11

( )
i

i

x

k k
x

B L x dx
h

 

 

Example 11  

Consider the initial-value problem 

𝑦′ =  𝑦 − 𝑥2  +  1, 0 ≤ 𝑥 ≤  2, 𝑦(0)  =  0.5. 
Use the exact values given from 𝑦(𝑥) = (𝑥 +  1)2 − 0.5𝑒𝑥 as starting values and      h 

= 0.2 to compare the approximations from 

(c)  By the explicit Adams-Bashforth four-step method and  

(d) The implicit Adams-Moulton three-step method. 

 

---------------------------------------------------------------------------------------------------- 

 

Backward Differentiation Formulas.  
Another type of multistep method uses a polynomial 

( )mP x  to approximate the solution ( )ny x  ) of the initial value problem (1) rather than 

its derivative '( )ny x , as in the Adams methods. We then differentiate ( )mP x and set 

1( )m nP x ) equal 1 1( , )n nf x y to obtain an implicit formula for 1ny . These are 

called backward differentiation formulas.  

The simplest case uses a first degree polynomial 1( )P x Ax B  . The coefficients are 

chosen to match the computed values of the solution ny  and 1ny . Thus A and B 

must satisfy 

1

1 1 1 1

( )

( )

n n n

n n n

P x Ax B y

P x Ax B y
                                    (8) 

 

Since 1 )'(P x A , the requirement that 11 1 1( ) (' , )n n nP f xx y  is just 
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1 1,( )n nA f x y  

Another expression for A comes from subtracting the first of Equation. (8) from the 

second, which gives    1( )n ny y
A

h
 . 

we obtain the first order backward differentiation formula 

1 1 1,( ).n n n ny y hf x y                                    (9) 

Note that Eq. (9) is just the backward Euler formula . 

By using higher order polynomials and correspondingly more data points, we can 

obtain backward differentiation formulas of any order. The second order formula is 

Or use the three step backward difference formula 

 

1 1
1

3 4
'( )

2

n n n
n

y y y
y x

h
    Substitute in the initial value problem (1) then 

1 1
1 1

3 4
( , )

2

n n n
n n

y y y
f x y

h
 

Arrange the terms we have 

1
1 1 1 13

4 2 ( , )n n n n ny y y hf x y  

 

and the fourth order formula is 

1 1 2 3 1 1125 48 3[ ( )6 ]16 3 12 ,n n n n n n ny y y y y hf x y   

 

These formulas have local truncation errors proportional to h3 and h5, respectively. 

 

     A comparison between one-step and multistep methods must take several factors 

into consideration. The fourth order Runge–Kutta method requires four evaluations of 

f at each step, while the fourth order Adams–Bashforth method (once past the starting 

values) requires only one, and the predictor–corrector method only two. 

Thus, for a given step size h, the latter two methods may well be considerably faster 

than Runge–Kutta. However, if Runge–Kutta is more accurate and therefore can use 

fewer steps, then the difference in speed will be reduced and perhaps eliminated. 

The Adams–Moulton and backward differentiation formulas also require that the 

difficulty in solving the implicit equation at each step be taken into account. All 

multistep methods have the possible disadvantage that errors in earlier steps can feed 

back into later calculations with unfavorable consequences. On the other hand, the 

underlying polynomial approximations in multistep methods make it easy to 

approximate the solution at points between the mesh points, should this be desirable. 

Multistep methods have become popular largely because it is relatively easy to estimate 

the error at each step and to adjust the order or the step size to control it.  

Summary 

1. An order s AB method combines f values in 1[ ],  n s nx x   to update ny  ; 

2. An order s AM method combines f values in  1 1,  [ ]n s nx x   to solve for 



58 | P a g e 
 

1ny   ; 

3. An order s BDF method combines y values in 1 1,  [ ]n s nx x   , evaluates f 

at 1nx   alone, and solves for 1ny  . 

our general formula will encompass all the methods in this document, but will 

account for possibly new multistep methods as well. Here it is: 

1 1
0 0

 
s s

k n k k n k
k k

y B f    
 

    

We can see how to recover AB, AM and BDF methods from this formula: 

1. For AB methods, 0;   1k k    and  0 0B   

2. For AM methods, 0;   1k k   , but 0 0B   

3. For BDF methods, 0;   0k k   . 

We derived several multistep methods using integrals and derivatives of polynomial 

interpolants, and presented a general formula that covered all the cases discussed in 

this document. Using the polynomial framework, we were also able to derive 

estimates for local truncation errors (LTEs) for all these methods. We remarked on 

global truncation errors for every method. 

However, we never discussed the stability of these methods, beyond pointing out that 

implicit methods may be more stable than explicit ones.  

 

PROBLEMS 

In each of Problems 1 through 6 determine an approximate value of the solution at 

0.4 and 0.5x x   using the specified method. For starting values use the values 

given by the Runge–Kutta method; Compare the results of the various methods with 

each other and with the actual solution (if available). 

(a) Use the fourth order predictor–corrector method with h = 0.1. Use the corrector 

formula once at each step. 

(b) Use the fourth order Adams–Moulton method with h = 0.1. 

(c) Use the fourth order backward differentiation method with h = 0.1. 

(1)  𝑦′ =  3 +  𝑥 −  𝑦,                     𝑦(0)  = 1  

(2)  𝑦′ =  5𝑥 −  3√𝑦,                      𝑦(0)  =  2 

(3)  𝑦′ =  2𝑦 −  3𝑥,                         𝑦(0)  = 1  

(4)  𝑦′ =  2𝑥 +  𝑦𝑒−𝑥,                   𝑦(0)  =  1 

(5) 𝑦′ = 𝑦2  +  2𝑥𝑦3  +  𝑥2 ,       𝑦(0)  =  0.5  

(𝟔) 𝑦 =  (𝑥2 − 𝑦2)𝑠𝑖𝑛 𝑦,           𝑦(0)  =  −1 
(7)  Show that the first order Adams–Bashforth method is the Euler method and that 

the first order Adams–Moulton method is the backward Euler method. 

(8)  Show that the third order Adams–Bashforth formula is 

1 1 212
23 16 5 .( )h

n n n n ny y f f f        

(9) Show that the third order Adams–Moulton formula is 

1 1 112
5 8 .( )h

n n n n ny y f f f        
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(10)  Derive the second order backward differentiation formula  

MULTISTEP METHODS (Tayler Expansion Technique)   

Multistep methods make use of information about the solution and its derivative at 

more than one point in order to extrapolate to the next point. One specific class of 

multistep methods is based on the principle of numerical integration. If the differential 

equation 𝑦′ =  𝑓(𝑥, 𝑦) is integrated from 𝑥𝑖 to 𝑥𝑖+1 we obtain  

𝑦𝑖+1  =  𝑦𝑖 +∫ 𝑓(𝑥, 𝑦(𝑥))𝑑𝑥                
𝑥𝑖+1

𝑥𝑖

          (1) 

To carry out the integration in (1), approximate 𝑓(𝑥, 𝑦(𝑥)) by a polynomial that 

interpolates 𝑓(𝑥, 𝑦(𝑥))at k points  𝑥𝑖 , 𝑥𝑖−1  ….𝑥𝑖−𝑘+1. If the Newton backward formula 

of degree k-1 is used to interpolate 𝑓(𝑥, 𝑦(𝑥)), then the Adams-Bashforth formulas  are 

generated and are of the form  

𝑦𝑖+1  =  𝑦𝑖 + ℎ∑𝑏𝑗𝑦
′
𝑖−𝑗+1

                                            (2)

𝑘

𝑗=1

 

where  
𝑦′
𝑖
= 𝑓(𝑥𝑖, 𝑦(𝑥𝑖)) 

This is called a k-step formula because it uses information from the previous k steps. 

Note that the Euler formula is a one-step formula (𝑘 = 1) with 𝑏1 = 1.  

Alternatively, if one begins with (1), the coefficients 𝑏𝑗 can be chosen by assuming that 

the past values of y are exact and equating like powers of h in the expansion of (2) and 

of the local solution 𝑦𝑖+1 about 𝑥𝑖. In the case of a three-step formula 

 
𝑦𝑖+1  =  𝑦𝑖 + ℎ[𝑏1𝑦

′
𝑖
+ 𝑏2𝑦

′
𝑖−1

+ 𝑏3𝑦
′
𝑖−2
] 

 

Expand  𝑦′
𝑖−1
, 𝑎𝑛𝑑 𝑦′

𝑖−2
about 𝑥𝑖 gives 

 

𝑦𝑖+1  =  𝑦𝑖 + ℎ𝑦
′
𝑖
(𝑏1 + 𝑏2+𝑏3) − ℎ

2𝑦′′
𝑖
(𝑏2 + 2𝑏3) +

ℎ3

3!
𝑦′′′

𝑖
(𝑏2 + 4𝑏3) + ⋯ 

Where 

𝑦′
𝑖−1

= 𝑦′(𝑥𝑖 − ℎ) = 𝑦′
𝑖
− ℎ𝑦′

′

𝑖
+
ℎ2

2!
𝑦′′′𝑖 −

ℎ3

3!
𝑦′′′′𝑖 +⋯          

𝑦′
𝑖−2

= 𝑦′(𝑥𝑖 − 2ℎ) = 𝑦′
𝑖
− 2ℎ𝑦′

′

𝑖
+
4ℎ2

2!
𝑦′′′

𝑖
−
8ℎ3

3!
𝑦′′′′

𝑖
+⋯ 

 

Multistep Methods 

The Taylor's series expansion of 𝑦𝑖+ 1 is 

𝑦′
𝑖+1

= 𝑦′(𝑥𝑖 + ℎ) = 𝑦𝑖 + ℎ𝑦′𝑖 +
ℎ2

2!
𝑦′′𝑖 +

ℎ3

3!
𝑦′′′𝑖 +⋯          

and upon equating like power of h, we have 

𝑏1 + 𝑏2 + 𝑏3=1 

𝑏2 + 2𝑏3 = −
1

2
 

𝑏2 + 2𝑏3 =
1

3
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The solution of this set of linear equations is 𝑏1 =
23

12
  , 𝑏2 =

−16

12
and 𝑏3 =

5

12
 

Therefore, the three-step Adams-Bashforth formula is 

𝑦𝑖+1  =  𝑦𝑖 +
ℎ

12
[23𝑦′

𝑖
− 16𝑦′

𝑖−1
− 5𝑦′

𝑖−2
]                              (3) 

A difficulty with multistep methods is that they are not self-starting. In (3) values for𝑦𝑖 

𝑦′
𝑖
, 𝑦′

𝑖−1
and 𝑦′

𝑖−2
 are needed to compute 𝑦𝑖+1 The traditional  technique for computing 

starting values has been to use Runge-Kutta formulas of the same accuracy since they 

only require𝑦0 to get started. An alternative procedure, which turns out to be more 

efficient, is to use a sequence of s-step formulas with 

 𝑠 =  1, 2, . . . , 𝑘 . The computation is started with the one-step formulas in order to 

provide starting values for the two-step formula and so on. Also, the problem of getting 

started arises whenever the step-size h is changed. This problem is overcome by using 

a k-step formula whose coefficients depend upon the past step-size h. This kind of 

procedure is currently used in commercial multistep routines. 

The previous multistep methods can be derived using polynomials that interpolated at 

the point 𝑥𝑖 and at points backward from 𝑥𝑖 these are sometimes known as formulas of 

explicit type. Formulas of implicit type can also be derived by basing the interpolating 

polynomial on the point 𝑥𝑖+1as well as on 𝑥𝑖 and points backward from 𝑥𝑖 The simplest 

formula of this type is obtained if the integral is approximated by the trapezoidal 

formula. This leads to 

𝑦𝑖+1  =  𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1)]                         (4) 

If f is nonlinear, 𝑦𝑖+1 cannot be solved for directly. However, 

we can attempt to obtain 𝑦𝑖+1 by means of iteration. Predict a first approximation 

𝑦0
𝑖+1

 to 𝑦𝑖+1by using the Euler method 

 

𝑦𝑖+1  =  𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖)                                                   (5) 
 

Then compute a corrected value with the trapezoidal formula 

𝑦𝑖+1  =  𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖)  )]                            (6)   

Which is called Modified Euler Method 

For most problems occurring in practice, convergence generally occurs within one or 

two iterations. Equations (5) and (6) used as outlined above define the simplest 

predictor-corrector method. 

 

 
Consistency and Convergence 

We have learned that the numerical solution obtained from Euler's method, 

𝑦𝑛+1  =  𝑦𝑛  +  ℎ𝑓(𝑥𝑛, 𝑦𝑛); 𝑥𝑛  = 𝑥0  +  𝑛ℎ; 
converges to the exact solution 𝑦(𝑥) of the initial value problem 

𝑦0  =  ℎ𝑓(𝑥, 𝑦);  𝑦(𝑥0)  =  𝑦0; 𝑎𝑠 ℎ →  0. 
We now analyze the convergence of a general one-step method of the form 
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𝑦𝑛+1  =  𝑦𝑛  +  ℎ∅(𝑥𝑛, 𝑦𝑛 , ℎ); for some continuous function∅(𝑥𝑛, 𝑦𝑛, ℎ). We define 

the local truncation error of this one-step method 

by 

𝑇𝑛(ℎ) =
𝑦𝑛+1 − 𝑦𝑛

ℎ
−  ∅(𝑥𝑛, 𝑦𝑛, ℎ): 

That is, the local truncation error is the result of substituting the exact solution into 

the approximation of the ODE by the numerical method. 

As ℎ →  0 and 𝑛 →  1, in such a way that 𝑥0  +  𝑛ℎ =  𝑥 ∈  [𝑥0;  𝑇], we obtain 

𝑇𝑛(ℎ) →  𝑦′ −  ∅(𝑥, 𝑦(𝑥), 0): 
We therefore say that the one-step method is consistent if 

∅(𝑥, 𝑦(𝑥), 0)  =  𝑓(𝑥, 𝑦): 
A consistent one-step method is one that converges to the ODE as ℎ →  0. 

We then say that a one-step method is stable if∅(𝑥𝑛, 𝑦𝑛, ℎ)is Lipschitz continuous in 

𝑦. That is, 

|∅(𝑥, 𝑢, ℎ)  −  ∅(𝑥, 𝑣, ℎ)| ≤ 𝐿∅|𝑢 −  𝑣|;  𝑥 ∈  [𝑥0, 𝑇], 𝑢, 𝑣 ∈  𝑅;  ℎ ∈  [0, ℎ0]; 
for some constant 𝐿∅ 

We now show that a consistent and stable one-step method is consistent. Using the 

same approach and notation as in the convergence proof of Euler's method, and the 

fact that the method is stable, we obtain the following bound for the global error  

𝑒𝑛  =  𝑦(𝑥𝑛) − 𝑦𝑛 

|𝑒𝑛| ≤ (
𝑒𝐿∅(𝑇−𝑥0) −  1

𝐿∅
) max
0≤𝑚≤𝑛−1

|𝑇𝑚(ℎ)| 

Because the method is consistent, we have 

lim
ℎ→0

max
0<𝑛<𝑇/ℎ

|𝑇𝑛(ℎ)|  =  0: 

It follows that as ℎ →  0 and 𝑛 →  1 in such a way that 𝑥0  +  𝑛ℎ =  𝑥, we have 

lim
𝑛→∞

|𝑒𝑛| =  0; 

and therefore the method is convergent. 

In the case of Euler's method, we have 

∅(𝑥, 𝑦, ℎ)  = 𝑓(𝑥, 𝑦); 𝑇𝑛(ℎ)  =
ℎ

2
𝑓′′(𝜇); 𝜇 𝜖 (𝑥0, 𝑇): 

Therefore, there exists a constant K such that 

|𝑇𝑛(ℎ)| < 𝐾ℎ;  0 <  ℎ < ℎ0; 
for some sufficiently small ℎ0. We say that Euler's method is first-order accurate. 

More generally, we say that a one-step method has order of accuracy 𝑝 if, for any 

sufficiently smooth solution 𝑦(𝑥),there exists constants K and ℎ0 such that 

|𝑇𝑛(ℎ)| < 𝐾ℎ
𝑝;  0 <  ℎ <  ℎ0: 

We now consider an example of a higher-order accurate method. 

 

An Implicit One-Step Method 

 

Suppose that we approximate the equation 

𝑦(𝑥𝑛+1)  =  𝑦(𝑥𝑛)  + ∫ 𝑦′(𝑠) 𝑑𝑠
𝑥𝑛+1

𝑥𝑛
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by applying the Trapezoidal Rule to the integral. This yields a one-step method 

𝑦𝑛+1  =  𝑦𝑛  +
ℎ

2
[𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1)] 

known as the trapezoidal method. It follows from the error in the Trapezoidal Rule 

that 

 

𝑇𝑛(ℎ) =
𝑦𝑛+1 − 𝑦𝑛

ℎ
−
1

2
[𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1)] = −

1

12
ℎ2𝑦′′(𝜏𝑛) 

𝜏𝑛 ∈ (𝑥𝑛, 𝑥𝑛+1) 
 

Therefore, the trapezoidal method is second-order accurate. 

To show convergence, we must establish stability by finding a suitable Lipschitz 

constant 𝐿∅for the function 

∅(𝑥, 𝑦, ℎ) =
1

2
[𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1)] 

 

assuming that 𝐿𝑓is a Lipschitz constant for 𝑓(𝑥, 𝑦) in 𝑦. We have 

|∅(𝑥, 𝑢, ℎ)  −  ∅(𝑥, 𝑣, ℎ)| 

=
1

2
|𝑓(𝑥, 𝑢, ℎ) + 𝑓(𝑥 + ℎ, 𝑢, ∅(𝑥, 𝑢, ℎ) − 𝑓(𝑥, 𝑣, ℎ) − 𝑓(𝑥 + ℎ, 𝑣, ∅(𝑥, 𝑣, ℎ)| 

≤ 𝐿𝑓|𝑢 − 𝑣| +
ℎ

2
𝐿𝑓|∅(𝑥, 𝑢, ℎ)  −  ∅(𝑥, 𝑣, ℎ)| 

 

Therefore 

(1 −
ℎ

2
𝐿𝑓) |∅(𝑥, 𝑢, ℎ)  −  ∅(𝑥, 𝑣, ℎ)| ≤ 𝐿𝑓|𝑢 − 𝑣| 

and therefore 

𝐿∅ ≤
𝐿𝑓

1 −
ℎ
2
𝐿𝑓

 

provided that 
ℎ

2
𝐿𝑓 < 1. We conclude that for ℎ sufficiently small, the trapezoidal 

method is stable,and therefore convergent, with 𝑂(ℎ2) global error. 

The trapezoidal method consist with Euler's method because it is an implicit method, 

due to the evaluation of 𝑓(𝑥, 𝑦) at 𝑦𝑛+1. It follows that it is generally necessary to solve 

a nonlinear equation to obtain 𝑦𝑛+1 from 𝑦𝑛. This additional computational effort is 

offset by the fact that implicit methods are generally more stable than explicit methods 

such as Euler's method. Another example of an implicit method is backward Euler's 

method 

𝑦𝑛+1  =  𝑦𝑛  +
ℎ

2
[𝑓(𝑥𝑛+1, 𝑦𝑛+1)] 

Like Euler's method, backward Euler's method is first-order accurate. 
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Boundary-Value Problems for Ordinary Differential Equations 

 

In this chapter we show how to approximate the solution to boundary-value problems, 

differential equations with conditions imposed at different points. For first-order 

differential equations, only one condition is specified, so there is no distinction between 

initial-value and boundary-value problems. We will be considering second-order 

equations with two boundary values. 

Physical problems that are position-dependent rather than time-dependent are often 

described in terms of differential equations with conditions imposed at more than one 

point. The two-point boundary-value problems in this chapter involve a second-order 

differential equation of the form 

𝑦′′ =  𝑓 (𝑥, 𝑦, 𝑦′),   𝑓𝑜𝑟 𝑎 ≤  𝑥 ≤  𝑏,                    (1) 
together with the boundary conditions 

𝑦(𝑎)  =  𝛼  and  𝑦(𝑏)  =  𝛽.                                       (2) 
 
The Linear Shooting Method 
The following theorem gives general conditions that ensure the solution to a second-

order boundary value problem exists and is unique.  

Theorem 1 
Suppose the function f in the boundary-value problem 

𝑦′′ =  𝑓 (𝑥, 𝑦, 𝑦′), for 𝑎 ≤  𝑥 ≤  𝑏,with 𝑦(𝑎)  =  𝛼 and 𝑦(𝑏)  =  𝛽, 
is continuous on the set 

𝐷 = {(𝑥, 𝑦, 𝑦′)|for 𝑎 ≤  𝑥 ≤  𝑏,with − ∞ <  𝑦 <  ∞ and − ∞ <  𝑦′ <  ∞}, 
and that the partial derivatives 𝑓𝑦 and 𝑓𝑦′ are also continuous on D. If 

(i) 𝑓𝑦 (𝑥, 𝑦, 𝑦′)  >  0, for all (𝑥, 𝑦, 𝑦′)  ∈  𝐷, and 

(ii) a constant M exists, with 

|𝑓𝑦′(𝑥, 𝑦, 𝑦′)| ≤  𝑀, 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥, 𝑦, 𝑦′′)  ∈  𝐷, 

then the boundary-value problem has a unique solution. 

 

Example 1  
Use Theorem (1) to show that the boundary-value problem 

𝑦′′ +  𝑒−𝑥𝑦 + 𝑠𝑖𝑛 𝑦′ =  0, 𝑓𝑜𝑟 1 ≤  𝑥 ≤  2,with 𝑦(1) =  𝑦(2) =  0, 
has a unique solution. 

Solution  
We have 

𝑓 (𝑥, 𝑦, 𝑦′)  = 𝑒−𝑥𝑦 + 𝑠𝑖𝑛 𝑦′. 
and for all x in [1, 2], 

𝑓𝑦(𝑥, 𝑦, 𝑦′)  =  𝑥𝑒
−𝑥𝑦  >  0 𝑎𝑛𝑑|𝑓𝑦′(𝑥, 𝑦, 𝑦

′)| = | − 𝑐𝑜𝑠 𝑦′|  ≤  1. 

So the problem has a unique solution. 

 

Linear Boundary-Value Problems 

The differential equation 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) 
is linear when functions 𝑝(𝑥), 𝑞(𝑥), and 𝑟(𝑥) exist with 
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𝑓(𝑥, 𝑦, 𝑦′)  =  𝑝(𝑥)𝑦′ +  𝑞(𝑥)𝑦 +  𝑟(𝑥). 
Problems of this type frequently occur, and in this situation, Theorem (1) can be 

simplified 

Corollary 11.2  
Suppose the linear boundary-value problem 

𝑦′′ =  𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 +  𝑟(𝑥), for 𝑎 ≤  𝑥 ≤  𝑏, with 𝑦(𝑎)  =  𝛼 and 𝑦(𝑏)  =  𝛽, 

Satisfies 

(i) 𝑝(𝑥), 𝑞(𝑥), and 𝑟(𝑥) are continuous on [𝑎, 𝑏], 
(ii) 𝑞(𝑥)  >  0 on [𝑎, 𝑏]. 
Then the boundary-value problem has a unique solution. 

To approximate the unique solution to this linear problem, we first consider the initial 

value problems 

𝑦′′ = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 +  𝑟(𝑥), for 𝑎 ≤  𝑥 ≤  𝑏,  
with     𝑦(𝑎) =  𝛼, and 𝑦′(𝑎)  =  0,                                             (3) 

and 

𝑦′′ = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 +  𝑟(𝑥), for 𝑎 ≤  𝑥 ≤  𝑏,  
with     𝑦(𝑎) = 0, and 𝑦′(𝑎)  = 1,                                               (4) 

 

Both problems have a unique solution. 

 

Let 𝑦1(𝑥) denote the solution to (3), and let 𝑦2(𝑥) denote the solution to (4). 

Assume that   𝑦2(𝑥) ≠  0.  

Define 

𝑦(𝑥) =  𝑦1(𝑥) +
 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2(𝑥).                               (5) 

Then 𝑦(𝑥) 𝑖s the solution to the linear boundary problem (3). To see this, first note that 

𝑦′(𝑥) =  𝑦1
′(𝑥) +

 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2
′(𝑥)                               (6) 

and 

𝑦′′(𝑥) =  𝑦1
′′(𝑥) +

 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2
′′(𝑥)                              (7) 

Substituting for 𝑦1
′′(𝑥) (x) and 𝑦2

′′(𝑥) in this equation gives  

 

𝑦′′ =  𝑝(𝑥)𝑦1
′(𝑥) +  𝑞(𝑥)𝑦1(𝑥)  +  𝑟(𝑥) + 

𝛽 −  𝑦1(𝑏)

𝑦2(𝑏)
(𝑝(𝑥)𝑦2

′(𝑥) +  𝑞(𝑥)𝑦2)

=  𝑝(𝑥)(𝑦1
′(𝑥) +

 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2
′(𝑥)) 

+  𝑞(𝑥)(𝑦1(𝑥) +
 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2(𝑥)) +  𝑟(𝑥)

= 𝑝(𝑥)𝑦′(𝑥)  +  𝑞(𝑥)𝑦(𝑥)  +  𝑟(𝑥). 
Moreover, 

𝑦(𝑎) =  𝑦1(𝑎) +
 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2(𝑎)  =  𝛼 +

 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
・ 0 =  𝛼 
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and 

𝑦(𝑏) =  𝑦1(𝑏) +
 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2(𝑏)  = 𝑦1(𝑏) +  𝛽 − 𝑦1(𝑏)  =   𝛽 

Linear Shooting 

The Shooting method for linear equations is based on the replacement of the linear 

boundary value problem by the two initial-value problems (3) and (4). Numerous 

methods are available from Chapter 5 for approximating the solutions𝑦1(𝑥) and 𝑦2(𝑥), 
and once these approximations are available, the solution to the boundary-value 

problem is approximated using Eq. (5). Graphically, the method has the appearance 

shown in Figure 1. 

 
Fig.1  

 

Example 2  
Apply the Linear Shooting technique with N = 10 to the boundary-value problem 

𝑦′′ = −
2

𝑥
𝑦′ +

2

𝑥2
 𝑦 +

 𝑠𝑖𝑛(𝑙𝑛 𝑥)

𝑥2
 , for 1 ≤ 𝑥 ≤ 2, with 𝑦(1) = 1 and 𝑦(2)  =  2, 

and compare the results to those of the exact solution 

𝑦 = 𝑐1𝑥 +
𝑐2
𝑥2
− 

3

10
 𝑠𝑖𝑛(𝑙𝑛 𝑥)  − 

1

10
𝑐𝑜𝑠(𝑙𝑛 𝑥), 

Where 

 

𝑐2 = 
1

70
[8 −  12 𝑠𝑖𝑛(𝑙𝑛 2)  −  4 𝑐𝑜𝑠(𝑙𝑛 2)]  ≈  −0.03920701320 

and 

𝑐1 = 
11

10
− 𝑐2  ≈  1.1392070132. 

Solution  

𝑦′′
1
= −

2

𝑥
𝑦′
1
+
2

𝑥2
𝑦1 + sin(ln 𝑥) 𝑥

2 , 

 for 1 ≤  𝑥 ≤  2, with   𝑦1(1)  =  1and 𝑦′1(1)  =  0  
, 

and 

𝑦′′
2
= −

2

𝑥
𝑦′
2
+
2

𝑥2
𝑦2  , 

, 𝑓𝑜𝑟 1 ≤  𝑥 ≤  2,with 𝑦2(1)  =  0 and 𝑦′2(1)  =  1. 
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The results of the calculations, with N = 10 and h = 0.1, are 

given in Table 1. The value listed as 𝑢1,𝑖 approximates 𝑦1(𝑥𝑖), the value 

𝑣1,𝑖approximates 𝑦2(𝑥𝑖),, and 𝑤𝑖 approximates 

𝑦′(𝑥𝑖) =  𝑦1
′(𝑥𝑖) +

 𝛽 − 𝑦1(𝑏)

𝑦2(𝑏)
𝑦2
′(𝑥𝑥𝑖) 

 

𝑥𝑖 𝑢1,𝑖 ≈ 𝑦1(𝑥𝑖)  𝑣1,𝑖 ≈ 𝑦2(𝑥𝑖) 𝑤𝑖 ≈ 𝑦(𝑥𝑖) 𝑦(𝑥𝑖) |𝑦(𝑥𝑖) − 𝑤𝑖| 

1.0 1.00000000 0.00000000 1.00000000 1.00000000  

1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43 × 10−7 

1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34 × 10−7 

1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78 × 10−8 

1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 × 10−8 

1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 × 10−8 

1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 × 10−8 

1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43 × 10−10 

1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05 × 10−9 

1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41 × 10−9 

2.0 1.46472815 0.58332538 2.00000000 2.00000000  

Table (12) 

 

The accurate results in this example are due to the fact that the fourth-order Runge- 

Kutta method gives 𝑂(ℎ4) approximations to the solutions of the initial-value 

problems. Unfortunately, because of round off errors, there can be problems hidden in 

this technique 

 

 

EXERCISE SET 1 

1. The boundary-value problem 

𝑦′′ =  4(𝑦 −  𝑥), 0 ≤  𝑥 ≤  1, 𝑦(0)  =  0, 𝑦(1)  =  2, 
has the solution 𝑦(𝑥)  =  𝑒2(𝑒4  − 1) − 1(𝑒2𝑥  − 𝑒−2𝑥) + 𝑥. Use the Linear 

Shooting method to approximate the solution, and compare the results to the actual 

solution. 

a. With h = 0.5 ;  

b. With h = 0.25 . 

2. The boundary-value problem 

𝑦′′ =  𝑦′ +  2𝑦 +  𝑐𝑜𝑠 𝑥, 0 ≤  𝑥 ≤
𝜋

2
, 𝑦(0)  =  −0.3, 𝑦 (

𝜋

2
) =  −0.1 

has the solution 𝑦(𝑥)  =  − 110 (𝑠𝑖𝑛 𝑥 +  3 𝑐𝑜𝑠 𝑥). Use the Linear Shooting 

method to approximate the solution, and compare the results to the actual solution. 

a. With ℎ =  (𝜋/4) ;  
b. With ℎ = ( 𝜋/8) . 

3. Use the Linear Shooting method to approximate the solution to the following 

boundary-value problems. 
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a. 𝑦′′ = −3𝑦′ + 2𝑦 + 2𝑥 +  3, 
 0 ≤  𝑥 ≤  1, 𝑦(0)  =  2, 𝑦(1) = 1;  use ℎ =  0.1. 

b. 𝑦′′ = −4𝑥−1𝑦′ − 2𝑥−2𝑦 + 2𝑥−2 ln 𝑥,                    
1 ≤ 𝑥 ≤ 2, 𝑦(1) = −0.5 , 𝑦(2) = 𝑙𝑛 2;  use ℎ = 0.05. 

c. 𝑦′′ = −(𝑥 +  1)𝑦′ +  2𝑦 + (1 − 𝑥2)𝑒−𝑥,    
0 ≤ 𝑥 ≤ 1, 𝑦(0) = −1, 𝑦(1) = 0;  use ℎ =  0.1. 

d. 𝑦′′ =  𝑥 − 1𝑦 +  3𝑥 − 2𝑦 +  𝑥 − 1 ln 𝑥 –  1, 
 1 ≤  𝑥 ≤  2, 𝑦(1)  =  𝑦(2)  =  0;  𝑢𝑠𝑒 ℎ =  0.1. 

4. Although 𝑞(𝑥)  <  0 in the following boundary-value problems, unique solutions 

exist and are given. Use the Linear Shooting Algorithm to approximate the 

solutions to the following problems, and compare the results to the actual solutions. 

a. y'' + y = 0, 0 ≤ x ≤ π/4 , y(0) = 1, y( π/4 ) = 1; use h = π/20 ;  

       Actual solution       𝑦(𝑥)  =  𝑐𝑜𝑠 𝑥 + (√2 −  1)𝑠𝑖𝑛 𝑥. 

b. y'' + 4y = cos x, 0 ≤  𝑥 ≤  𝜋/4 , 𝑦(0)  =  0, 𝑦( 𝜋/4 )  =  0;  use ℎ =  𝜋/20 ;  

       Actual solution 𝑦(𝑥)  = −13 𝑐𝑜𝑠 2𝑥 − √26 𝑠𝑖𝑛 2𝑥 +  13 𝑐𝑜𝑠 𝑥. 
c. 𝑦′′ = −4𝑥−1𝑦′ +  2𝑥−2𝑦 –  2𝑥−2 ln 𝑥, 

 𝑦(1)  =  1/2 , 𝑦(2)  =  𝑙𝑛 2;  use ℎ =  0.05;  
     Actual solution    𝑦(𝑥)  =  4𝑥−1 −  2𝑥−2  +  𝑙𝑛 𝑥 −  3/2. 

d. 𝑦′′ =  2𝑦′ −  𝑦 +  𝑥𝑒𝑥  −  𝑥, 0 ≤  𝑥 ≤  2,  
𝑦(0)  =  0, 𝑦(2)  =  −4;  use ℎ =  0.2;  

     Actual solution 𝑦(𝑥)  =  16 𝑥3𝑒𝑥 −  53 𝑥𝑒𝑥  +  2𝑒𝑥 −  𝑥 −  2. 
5. Use the Linear Shooting Algorithm to approximate the solution 𝑦 =  𝑒−10𝑥to the 

boundary-value problem 

𝑦′′ =  100𝑦, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  1, 𝑦(1)  =  𝑒−10 

Use h = 0.1 and 0.05. 

 
 
Finite-Difference Methods for Linear Problems 
The linear and nonlinear Shooting methods for boundary-value problems can present 

problems of instability. The methods in this section have better stability characteristics, 

but they generally require more computation to obtain a specified accuracy. Methods 

involving finite differences for solving boundary-value problems replace each of the 

derivatives in the differential equation with an appropriate difference-quotient 

approximation of the type considered in Section 4.1. The particular difference quotient 

and step size h are chosen to maintain a specified order of truncation error. However, 

h cannot be chosen too small because of the general instability of the derivative 

approximations. 

 

Discrete Approximation 

The finite difference method for the linear second-order boundary-value problem, 

 

𝑦′′ = 𝑝(𝑥)𝑦′ +  𝑞(𝑥)𝑦 + 𝑟(𝑥), for 𝑎 ≤ 𝑥 ≤ 𝑏,with 𝑦(𝑎) = 𝛼 and 𝑦(𝑏) = 𝛽 

(11.14)(8) 
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Requires that difference-quotient approximations be used to approximate both 𝑦′and 

𝑦′′. First, we select an integer N > 0 and divide the interval [a, b] into (N+1) equal 

subintervals whose endpoints are the mesh points 

 𝑥𝑖 = 𝑎 + 𝑖ℎ, for 𝑖 =  0, 1, . . . , 𝑁 + 1, where ℎ = (𝑏 − 𝑎)/(𝑁 + 1). 
Choosing the step size h in this manner facilitates the application of a matrix algorithm 

from Chapter 6, which solves a linear system involving an N × N matrix. At the interior 

mesh points, xi, for 𝑖 =  1, 2, . . . , 𝑁, the differential equation to be approximated is 

𝑦′′(𝑥𝑖)  =  𝑝(𝑥𝑖)𝑦′(𝑥𝑖)  +  𝑞(𝑥𝑖)𝑦(𝑥𝑖)  +  𝑟(𝑥𝑖).                     (9)(11.15) 
Expanding y in a third Taylor polynomial about 𝑥𝑖 evaluated at 𝑥𝑖+1and 𝑥𝑖−1, we have, 

assuming that 𝑦 ∈  𝐶4[𝑥𝑖−1, 𝑥𝑖+1 ], 

 𝑦(𝑥𝑖+1) = 𝑦(𝑥𝑖 +  ℎ) =  𝑦(𝑥𝑖) + ℎ𝑦′(𝑥𝑖) +
ℎ2

2!
𝑦′′(𝑥𝑖) +

ℎ3

3!
𝑦′′′(𝑥𝑖) +

ℎ4

24
𝑦(4)(𝜉+𝑖)  

𝑦(𝑥𝑖−1) = 𝑦(𝑥𝑖 −  ℎ) =  𝑦(𝑥𝑖) − ℎ𝑦
′(𝑥𝑖) +

ℎ2

2!
𝑦′′(𝑥𝑖) −

ℎ3

3!
𝑦′′′(𝑥𝑖) +

ℎ4

24
𝑦(4)(𝜉−𝑖)  

 

for some 𝜉+𝑖 in (𝑥𝑖 , 𝑥𝑖+1), and for some 𝜉−𝑖in (𝑥𝑖−1, 𝑥𝑖). If these equations are added, 

we have 

 𝑦(𝑥𝑖+1) +  𝑦(𝑥𝑖−1)  =  2𝑦(𝑥𝑖) + ℎ
2𝑦′′(𝑥𝑖) + 

ℎ4

24
[𝑦(4)(𝜉+𝑖) + 𝑦

(4)(𝜉−𝑖)], 

and solving for 𝑦′′(𝑥𝑖)) gives 

𝑦′′(𝑥𝑖) =  
1

ℎ2
[𝑦(𝑥𝑖+1)  −  2𝑦(𝑥𝑖) + 𝑦(𝑥𝑖−1)]  −  

ℎ2

24
[𝑦(4)(𝜉+𝑖) + 𝑦

(4)(𝜉−𝑖)]. 

The Intermediate Value Theorem can be used to simplify the error term to give 

𝑦′′(𝑥𝑖) =  
1

ℎ2
[𝑦(𝑥𝑖+1)  −  2𝑦(𝑥𝑖) + 𝑦(𝑥𝑖−1)]  −  

ℎ2

12
𝑦(4)(𝜉𝑖).         (10)(11.16) 

for some 𝜉𝑖 in (𝑥𝑖−1, 𝑥𝑖+1) 
  

This is called the centered-difference formula for 𝑦′′(𝑥𝑖). 
A centered-difference formula for 𝑦′(𝑥𝑖)is obtained in a similar manner (the details 

were considered in Section 4.1), resulting in  

𝑦′(𝑥𝑖) =  
1

2ℎ
[𝑦(𝑥𝑖+1)  −  𝑦(𝑥𝑖−1)] −  

ℎ2

12
𝑦(3)(𝜂𝑖).                   (11)(11.17) 

for some 𝜂𝑖 in (𝑥𝑖−1, 𝑥𝑖+1) The use of these centered-difference formulas in Eq. (9) 

results in the equation 
1

ℎ2
[𝑦(𝑥𝑖+1)  −  2𝑦(𝑥𝑖) + 𝑦(𝑥𝑖−1)]

=  𝑝(𝑥𝑖) (
1

2ℎ
[𝑦(𝑥𝑖+1)  −  𝑦(𝑥𝑖−1)]) +  𝑞(𝑥𝑖)𝑦(𝑥𝑖) +  𝑟(𝑥𝑖)

−
ℎ2

12
(2𝑝(𝑥𝑖)𝑦

(3)(𝜂𝑖) + 𝑦
(4)(𝜉𝑖)) 

A Finite-Difference method with truncation error of order 𝑂(ℎ2) results by using this 

equation together with the boundary conditions 𝑦(𝑎)  =  𝛼 and 𝑦(𝑏)  =  𝛽 to define 

the system of linear equations 

𝑤0 =  𝛼, 𝑤𝑁+1  =  𝛽 
and 
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1

ℎ2
[𝑤𝑖+1  −  2𝑤𝑖 +𝑤𝑖−1] −  𝑝(𝑥𝑖) (

1

2ℎ
[𝑤𝑖+1  − 𝑤𝑖−1]) −  𝑞(𝑥𝑖)𝑦(𝑥𝑖) =  𝑟(𝑥𝑖) 

 (12) (11.18) 

for each 𝑖 =  1, 2, . . . , 𝑁. 

In the form we will consider, Eq. (12) is rewritten as 

−((1 +
ℎ

2
𝑝(𝑥𝑖))𝑤𝑖−1 + (2 + ℎ

2𝑞(𝑥𝑖)) 𝑤𝑖 − ((1 −
ℎ

2
𝑝(𝑥𝑖))𝑤𝑖+1 = −ℎ

2𝑟(𝑥𝑖)      

and the resulting system of equations is expressed in the tridiagonal N × N matrix form 

 

Aw = b,                                         (13)    

 

 

 
 

 
 

Example 1  
Consider  N = 9 to approximate the solution to the linear boundary-value problem 

 

𝑦′′ = −
2

𝑥
𝑦′ +

2

𝑥2
 𝑦 +

 𝑠𝑖𝑛(𝑙𝑛 𝑥)

𝑥2
 , for 1 ≤ 𝑥 ≤ 2, with 𝑦(1) = 1 and 𝑦(2)  =  2, 

 

and compare the results to  exact solution 

 

𝑦 = 1.1392070132. 𝑥 +
−0.03920701320

𝑥2
− 

3

10
 𝑠𝑖𝑛(𝑙𝑛 𝑥)  − 

1

10
𝑐𝑜𝑠(𝑙𝑛 𝑥), 

 

Solution  
For this example, we will use N = 9, so h = 0.1 
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𝑥𝑖 𝑤𝑖 𝑦(𝑥𝑖) |𝑤𝑖 − 𝑦(𝑥𝑖)| 
1.0 1.00000000 1.00000000  

1.1 1.09260052 1.09262930 2.88 × 10−5 

1.2 1.18704313 1.18708484 4.17 × 10−5 

1.3 1.28333687 1.28338236 4.55 × 10−5 

1.4 1.38140205 1.38144595 4.39 × 10−5 

1.5 1.48112026 1.48115942 3.92 × 10−5 

1.6 1.58235990 1.58239246 3.26 × 10−5 

1.7 1.68498902 1.68501396 2.49 × 10−5 

1.8 1.78888175 1.78889853 1.68 × 10−5 

1.9 1.89392110 1.89392951 8.41 × 10−6 

2.0 2.00000000 2.00000000  

Table (13) 

 

These results are considerably less accurate than those obtained in Example 1. This is 

because the method used in that example involved a Runge-Kutta technique with local 

truncation error of order 𝑂(ℎ4), whereas the difference method used here has local 

truncation error of order 𝑂(ℎ2). To obtain a difference method with greater accuracy, 

we can proceed in a number of ways. Using fifth-order Taylor series for approximating 

𝑦′′(𝑥𝑖) and 𝑦′(𝑥𝑖) results in a truncation error term involving ℎ4. However, this process 

requires using multiples not only of 𝑦(𝑥𝑖+1) and 𝑦(𝑥𝑖−1), but also of 𝑦(𝑥𝑖+2) and 

𝑦(𝑥𝑖−2) in the approximation formulas for 𝑦′′(𝑥𝑖) and 𝑦′(𝑥𝑖). This leads to difficulty 

at i = 0, because we do not know 𝑤−1, and at 𝑖 =  𝑁, because we do not know 𝑤𝑁+2. 

Moreover, the resulting system of equations analogous to (13) is not in tridiagonal 

form, and the solution to the system requires many more calculations. 

 

EXERCISE SET 11.3 

1. The boundary-value problem 

𝑦′′ =  4(𝑦 −  𝑥), 0 ≤  𝑥 ≤ 1, 𝑦(0) = 0, 𝑦(1) = 2 

has the solution 𝑦(𝑥)  =  𝑒2(𝑒4 −  1)−1(𝑒2𝑥  −  𝑒−2𝑥)  +  𝑥. Use the Linear 

Finite-Difference method to approximate the solution, and compare the results to 

the actual solution. 

a. With h = 0.5 

b. With h = 0.25 

c. Use extrapolation to approximate 𝑦(1/2). 
2. The boundary-value problem 

𝑦′′ =  𝑦′ +  2𝑦 +  𝑐𝑜𝑠 𝑥, 0 ≤ 𝑥 ≤  𝜋/2 , 𝑦(0) = −0.3, 𝑦( 𝜋/2) =  −0.1 

has the solution 𝑦(𝑥)  =  − 1/10 (𝑠𝑖𝑛 𝑥 + 3 𝑐𝑜𝑠 𝑥). Use the Linear Finite-

Difference method to approximate the solution, and compare the results to the 

actual solution. 

a. With h = π/4 ; b. With h = π/8 . 

c. Use extrapolation to approximate 𝑦(𝜋/4). 
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3. Use the Linear Finite-Difference Algorithm to approximate the solution to the 

following boundary value problems. 

a. 𝑦′′ = −3𝑦′ + 2𝑦 + 2𝑥 + 3,    0 ≤ 𝑥 ≤ 1, 𝑦(0) = 2, 𝑦(1) = 1;  use ℎ =  0.1. 
b. 𝑦′′ = −4𝑥−1𝑦′ +  2𝑥−2𝑦 –  2𝑥−2 ln 𝑥 ,       1 ≤  𝑥 ≤  2, 
              𝑦(1)  =  −12 , 𝑦(2)  =  𝑙𝑛 2;  use ℎ =  0.05. 

c. 𝑦′′ = −(𝑥 +  1)𝑦′ +  2𝑦 + (1 – 𝑥2)𝑒−𝑥,    0 ≤  𝑥 ≤  1, 
𝑦(0)  =  −1, 𝑦(1)  =  0;  use ℎ =  0.1. 

d. 𝑦′′ = 𝑥−1𝑦′ +  3𝑥−2𝑦 + 𝑥−1 ln 𝑥 –  1, 1 ≤  𝑥 ≤  2, 
 𝑦(1)  =  𝑦(2)  =  0;  use ℎ =  0.1. 

4. Although 𝑞(𝑥)  <  0 in the following boundary-value problems, unique solutions 

exist and are given. Use the Linear Finite-Difference Algorithm to approximate the 

solutions, and compare the results to the actual solutions. 

e. y'' + y = 0, 0 ≤ x ≤ π/4 , y(0) = 1, y( π/4 ) = 1; use h = π/20 ;  

    actual solution      𝑦(𝑥)  =  𝑐𝑜𝑠 𝑥 + (√2 −  1)𝑠𝑖𝑛 𝑥. 

f. y'' + 4y = cos x, 0 ≤  𝑥 ≤  𝜋/4 , 𝑦(0)  =  0, 𝑦( 𝜋/4 )  =  0;  use ℎ =  𝜋/20 ;  

actual solution       𝑦(𝑥)  = −13 𝑐𝑜𝑠 2𝑥 − √26 𝑠𝑖𝑛 2𝑥 +  13 𝑐𝑜𝑠 𝑥. 
g. 𝑦′′ = −4𝑥−1𝑦′ +  2𝑥−2𝑦 –  2𝑥−2 ln 𝑥, 

 𝑦(1)  =  1/2 , 𝑦(2)  =  𝑙𝑛 2;  use ℎ =  0.05;  
actual solution       𝑦(𝑥)  =  4𝑥−1 −  2𝑥−2  +  𝑙𝑛 𝑥 −  3/2. 

h. 𝑦′′ =  2𝑦′ −  𝑦 +  𝑥𝑒𝑥  −  𝑥, 0 ≤  𝑥 ≤  2,  
𝑦(0)  =  0, 𝑦(2)  =  −4;  use ℎ =  0.2;  

actual solution 𝑦(𝑥)  =  16 𝑥3𝑒𝑥 −  53 𝑥𝑒𝑥  +  2𝑒𝑥 −  𝑥 −  2. 
5. Use the Linear Finite-Difference Algorithm to approximate the solution 𝑦 = 𝑒−10𝑥 

to the boundary value problem 

𝑦′′ =  100𝑦, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  1, 𝑦(1)  =  𝑒−10 

Use ℎ =  0.1 and 0.05. Can you explain the consequences? 

6. Repeat Exercise 3(a) and (b) using the extrapolation discussed in Example 2.  

 

The Rayleigh-Ritz Method 
The Shooting method for approximating the solution to a boundary-value problem 

replaced the boundary-value problem with pair of initial-value problems. The finite-

difference approach replaces the continuous operation of differentiation with the 

discrete operation of finite differences. The Rayleigh-Ritz method is a variational 

technique that attacks the problem from a third approach. The boundary-value problem 

is first reformulated as a problem of choosing, from the set of all sufficiently 

differentiable functions satisfying the boundary conditions, the function to minimize a 

certain integral. Then the set of feasible functions is reduced in size, and an 

approximation is found from this set to minimize the integral. This gives our 

approximation to the solution of the boundary-value problem. To describe the 

Rayleigh-Ritz method, we consider approximating the solution to a linear two-point 

boundary-value problem from beam-stress analysis. This boundary-value problem is 

described by the differential equation 

− 
𝑑

𝑑𝑥
(𝑝(𝑥)𝑦′) +  𝑞(𝑥)𝑦 =  𝑓 (𝑥), for 0 ≤  𝑥 ≤  1,            (14)     (11.21) 
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with the boundary conditions  

𝑦(0)  =  𝑦(1)  =  0.                                         (15)(11.22) 

This differential equation describes the deflection y(x) of a beam of length 1 with 

variable cross section represented by 𝑞(𝑥). The deflection is due to the added stresses 

𝑝(𝑥) and 𝑓(𝑥). 
More general boundary conditions are considered in Exercises 6 and 9. 

In the discussion that follows, we assume that 𝑝 ∈  𝐶1[0, 1] and 𝑞, 𝑓 ∈  𝐶[0, 1]. 
Further, we assume that there exists a constant δ > 0 such that 

𝑝(𝑥)  ≥  𝛿, and that 𝑞(𝑥)  ≥  0, for each x in [0, 1]. 

These assumptions are sufficient to guarantee that the boundary-value problem given 

in (14) and (15) has a unique solution (see [BSW]). 

 

Variational Problems 

As is the case in many boundary-value problems that describe physical phenomena, 

the solution to the beam equation satisfies an integral minimization variational 

property. The variational principle for the beam equation is fundamental to the 

development of the Rayleigh-Ritz method and characterizes the solution to the beam 

equation as the function that minimizes an integral over all functions in 𝐶2[0, 1], the 

set of those functions u in 𝐶2[0, 1] with the property that 𝑢(0) = 𝑢(1) =  0. The 

following theorem gives the characterization. 

Theorem (2) 

Let 𝑝 ∈  𝐶1[0, 1] , 𝑞, 𝑓 ∈  𝐶[0, 1], and 

𝑝(𝑥)  ≥  𝛿 >  0, 𝑞(𝑥)  ≥  0, 𝑓𝑜𝑟 0 ≤  𝑥 ≤  1. 
The function y ∈ 𝐶0

2[0, 1] is the unique solution to the differential equation 

− 
𝑑

𝑑𝑥
(𝑝(𝑥)𝑦′) +  𝑞(𝑥)𝑦 =  𝑓 (𝑥), for 0 ≤  𝑥 ≤  1,                                      (16)  

if and only if y is the unique function in 𝐶0
2[0, 1] that minimizes the integral 

𝐼[𝑢] = ∫
1

0

{𝑝(𝑥)[𝑢′(𝑥)]2  +  𝑞(𝑥)[𝑢(𝑥)]2  −  2𝑓 (𝑥)𝑢(𝑥)} 𝑑𝑥.       (17) 

Details of the proof of this theorem can be found in [Shul], pp. 88-89. It proceeds in 

three steps.  

 

•First it is shown that any solution y to (16) also satisfies the equation 

∫
1

0

𝑓 (𝑥)𝑢(𝑥)𝑑𝑥 = ∫
1

0

𝑝(𝑥)𝑦′(𝑥)𝑢′(𝑥)  +  𝑞(𝑥)𝑦(𝑥)𝑢(𝑥)𝑑𝑥, (18) 

for all [ , .]2
0 0 1u C   

• The second step shows that [ , ]2
0 0 1y C  is a solution to (17) if and only if (18) 

holds for all [ , .]2
0 0 1u C  

• The final step shows that (18) has a unique solution. This unique solution will also be 

a solution to (16) and to (17), so the solutions to (16) and (17) are identical. 

The Rayleigh-Ritz method approximates the solution y by minimizing the integral, not 

over all the functions in ],[2
0 0 1C  , but over a smaller set of functions consisting of 
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linear combinations of certain basis functions , ,...,1 2 nφ φ φ  . The basis functions are 

linearly independent and satisfy 

( ) ( )  0 1 0i iφ φ  , for each 𝑖 =  1, 2, . . . , 𝑛. 

An approximation ( ) ( )
1

n

i i
i

φ x c φ x  to the solution 𝑦(𝑥) of Eq. (16) is then 

obtained by finding constants , ,. . .,1 2 nc c c  to minimize the integral 

 𝐼[𝜑(𝑥)] = 𝐼[∑ 𝑐𝑖𝜑𝑖
𝑛
𝑖=1 ] 

 

From Eq. (17), 

𝐼[𝜑(𝑥)] = 𝐼[∑ 𝑐𝑖𝜑𝑖
𝑛
𝑖=1 ]                                                                          (19)        

= ∫ {𝑝(𝑥)[∑ 𝑐𝑖𝜑′𝑖
𝑛
𝑖=1 ]2 + 𝑞(𝑥)[∑ 𝑐𝑖𝜑𝑖

𝑛
𝑖=1 ]2 − 2𝑓(𝑥)∑ 𝑐𝑖𝜑𝑖

𝑛
𝑖=1 }𝑑𝑥

1

0
      

 

 

and, for a minimum to occur, it is necessary, when considering I as a function of 

, ,. . .,1 2 nc c c to have 

 0
j

I

c
, for each 𝑗 =  1, 2, . . . , 𝑛.                                            (20) 

Differentiating (19) gives 
𝜕𝐼

𝜕𝑐𝑗
= 

∫ {2𝑝(𝑥)∑𝑐𝑖𝜑
′
𝑖

𝑛

𝑖=1

(𝑥)𝑐𝑖𝜑
′
𝑗
(𝑥) + 2𝑞(𝑥)∑𝑐𝑖𝜑𝑖(𝑥)

𝑛

𝑖=1

𝜑𝑗(𝑥) − 2𝑓(𝑥)𝜑𝑗(𝑥)} 𝑑𝑥
1

0

 

for each 𝑗 =  1, 2, . . . , 𝑛. 

 

and substituting into Eq. (20) yields 

∑[∫ {𝑝(𝑥)𝜑′
𝑖
(𝑥)𝑐𝑖𝜑

′
𝑗
(𝑥) + 𝑞(𝑥)𝜑𝑖(𝑥)𝜑𝑗(𝑥)} 𝑐𝑖

1

0

] 𝑑𝑥

𝑛

𝑖=1

−∫ 𝑓(𝑥)𝜑𝑗(𝑥)𝑑𝑥
1

0

= 0 

 

 (21)(11.28) 

for each 𝑗 =  1, 2, . . . , 𝑛. 

The normal equations described in Eq. (21) produce an n×n linear system Ac = b 

in the variables , where the symmetric matrix A has 

( ) (( ) ) ( ) () )(
1

0
i jij i ja p x φ x φ x q x φ x φ x dx  

 

and b is defined by 

(( ))
1

0
jib f x φ xx d  

 

, ,. . .,1 2 nc c c
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Piecewise-Linear Basis 

The simplest choice of basis functions involves piecewise-linear polynomials. The first 

step is to form a partition of [0, 1] by choosing points , ,. . .,0 1 1nx x x  with 

.0 1 10 1n nx x x x...  Letting 1i i ih x x  , for each ,  ,...,0 1i n  , 

we define the basis functions , ,. ( ) ( ) ( ). .,1 2 nφ x φ x φ x  by 

                

𝜑(𝑥) =

{
  
 

  
 

0              if    0 ≤ 𝑥 ≤ 𝑥𝑖−1,
(𝑥 − 𝑥𝑖−1)

ℎ𝑖−1
      if  𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 ,

(𝑥𝑖+1 − 𝑥)

ℎ𝑖
          if   𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

0            if    𝑥𝑖+1 ≤ 𝑥 ≤ 1.

                               (22) 

for each 𝑖 =  1, 2, . . . , 𝑛.   

 

 

The functions ( )iφ x  are piecewise-linear, so the derivatives )' (iφ x  , while not 

continuous, are constant on ),( , 1j jx x  for each 𝑗 =  0, 1, . . . , 𝑛, and 

 

 

𝜑′
𝑖
(𝑥) =

{
  
 

  
 
0              if    0 ≤ 𝑥 ≤ 𝑥𝑖−1,
1

ℎ𝑖−1
      if  𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 ,

1

ℎ𝑖
          if   𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

0            if    𝑥𝑖+1 ≤ 𝑥 ≤ 1.

                                              (23)   

 

for each 𝑖 =  1, 2, . . . , 𝑛. 
Because ( )iφ x  and )' (iφ x are nonzero only on ),( , 1i ix x ( ) ( ) 0i jφ x φ x  and

' '( ) ( ) 0i jφ x φ x  , except when j is 𝑖 −  1, i, or 𝑖 +  1. As a consequence, the linear 

system given by (21) reduces to an 𝑛 ×  𝑛 tridiagonal linear system. The nonzero 

entries in A are 

 

𝑎𝑖,𝑖 = ∫ {𝑝(𝑥)[𝜑′
𝑖
(𝑥)]

2
+ 𝑞(𝑥)[𝜑𝑖(𝑥)]

2} 𝑑𝑥
1

0

 

       = (
1

ℎ𝑖−1
)
2

∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑖

𝑥𝑖−1

+ (
1

ℎ𝑖
)
2

∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑖+1

𝑥𝑖

 

        = (
1

ℎ𝑖−1
)
2

∫ (𝑥 − 𝑥𝑖−1)
2

𝑥𝑖

𝑥𝑖−1

𝑞(𝑥)𝑑𝑥 + (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)
2

𝑥𝑖+1

𝑥𝑖

𝑞(𝑥)𝑑𝑥 

 

for each 𝑖 =  1, 2, . . . , 𝑛; 
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𝑎𝑖,𝑖+1 = ∫ {𝑝(𝑥)𝜑′
𝑖
(𝑥)𝜑′

𝑖+1
(𝑥) + 𝑞(𝑥)𝜑𝑖(𝑥)𝜑𝑖+1(𝑥)}𝑑𝑥

1

0

 

       = (
−1

ℎ𝑖
)
2

∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑖+1

𝑥𝑖

+ (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)(𝑥 −
𝑥𝑖+1

𝑥𝑖

𝑥𝑖)𝑞(𝑥)𝑑𝑥 

 

for each 𝑖 =  1, 2, . . . , 𝑛 − 1; 
 

𝑎𝑖,𝑖−1 = ∫
1

0

{𝑝(𝑥)𝜑′
𝑖
(𝑥)𝜑′

𝑖−1
(𝑥) + 𝑞(𝑥)𝜑𝑖(𝑥)𝜑𝑖−1(𝑥)}𝑑𝑥 

       = (
−1

ℎ𝑖−1
)
2

∫
𝑥𝑖

𝑥𝑖−1

𝑝(𝑥)𝑑𝑥 + (
1

ℎ𝑖−1
)
2

∫ (𝑥𝑖 − 𝑥)(𝑥 −
𝑥𝑖

𝑥𝑖−1

𝑥𝑖−1)𝑞(𝑥)𝑑𝑥 

 

for each 𝑖 =  2, . . . , 𝑛; 
 

𝑏𝑖 = ∫ 𝑓(𝑥)𝜑𝑖(𝑥)𝑑𝑥
1

0

= (
1

ℎ𝑖−1
)∫ (𝑥 −

𝑥𝑖

𝑥𝑖−1

𝑥𝑖−1)𝑓(𝑥)𝑑𝑥 + (
1

ℎ𝑖
)∫ (𝑥𝑖+1 − 𝑥

𝑥𝑖+1

𝑥𝑖

)𝑓(𝑥)𝑑𝑥 

 

for each 𝑖 =  1,2, . . . , 𝑛; 
 

There are six types of integrals to be evaluated: 

𝑄1,𝑖  = (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖)
𝑥𝑖+1

𝑥𝑖

 𝑞(𝑥)𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛 −  1, 

𝑄2,𝑖  = (
1

ℎ𝑖−1
)
2

∫ (𝑥 − 𝑥𝑖−1)
2

𝑥𝑖

𝑥𝑖−1

 𝑞(𝑥)𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛 , 
 

𝑄3,𝑖  = (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)
2

𝑥𝑖+1

𝑥𝑖

 𝑞(𝑥) 𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛 , 
 

𝑄4,𝑖  = (
1

ℎ𝑖−1
)
2

∫
𝑥𝑖

𝑥𝑖−1

 𝑝(𝑥) 𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛 +  1, 
 

𝑄5,𝑖  =
1

ℎ𝑖−1
∫ (𝑥 − 𝑥𝑖−1)
𝑥𝑖

𝑥𝑖−1

𝑓(𝑥) 𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛1, 
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And 

𝑄6,𝑖  =
1

ℎ𝑖
∫ (𝑥𝑖+1 − 𝑥)
𝑥𝑖+1

𝑥𝑖

𝑓(𝑥) 𝑑𝑥,  

for each 𝑖 =  1, 2, . . . , 𝑛 , 
 

The matrix A and the vector b in the linear system Ac = b have the entries 

 

𝑎𝑖,𝑖 = 𝑄4,𝑖  +  𝑄4,𝑖+1  +  𝑄2,𝑖  +  𝑄3,𝑖  ,   for each 𝑖 =  1, 2, . . . , 𝑛,, 
𝑎𝑖,𝑖+1  =  −𝑄4,𝑖+1  +  𝑄1,𝑖 ,             for each 𝑖 = 1, 2, . . . , 𝑛 −  1, 
𝑎𝑖,𝑖−1  =  −𝑄4,𝑖 + 𝑄1,𝑖−1,                       for each 𝑖 =  2, 3, . . . , 𝑛, 

and 

𝑏𝑖  =  𝑄5,𝑖  +  𝑄6,𝑖 ,                       for each 𝑖 =  1, 2, . . . , 𝑛. 
The entries in c are the unknown coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑛, from which the Rayleigh-

Ritz approximation φ, given by 𝜑(𝑥)  = ∑ 𝑐𝑖𝜑𝑖(𝑥)
𝑛
𝑖=1 , is constructed. 

 

To employ this method requires evaluating 6n integrals, which can be evaluated 

either directly or by a quadrature formula such as Composite Simpson’s rule. 

An alternative approach for the integral evaluation is to approximate each of the 

functions p, q, and f with its piecewise-linear interpolating polynomial and then 

integrate the approximation. Consider, for example, the integral 𝑄1,𝑖 . The piecewise-

linear interpolation of q is 

 

𝑃𝑞(𝑥)  = ∑𝑞(𝑥𝑖)𝜑𝑖(𝑥)

𝑛+1

𝑖=0

, 

where 𝜑1, . . . , 𝜑𝑛 are defined in (11.30) and 

 

 

𝜑0 = {
(𝑥1−𝑥)

𝑥1
           0 ≤ 𝑥 ≤ 𝑥1

0                  otherwise
      and  𝜑𝑛+1 = {

(𝑥−𝑥𝑖)

𝑥𝑖
           0 ≤ 𝑥 ≤ 𝑥1

0                  otherwise
 

 

 

The interval of integration is [𝑥𝑖 , 𝑥𝑖+1], so the piecewise polynomial 𝑃𝑞(𝑥)  reduces to 

𝑃𝑞(𝑥)  =  𝑞(𝑥𝑖)𝜑𝑖(𝑥)  +  𝑞(𝑥𝑖+1)𝜑𝑖+1(𝑥). 

|𝑞(𝑥) −  𝑃𝑞(𝑥)| =  𝑂(ℎ2𝑖 ),    for    𝑥𝑖  ≤  𝑥 ≤  𝑥𝑖+1, 
if 𝑞 ∈  𝐶2[𝑥𝑖 , 𝑥𝑖+1]. For 𝑖 =  1, 2, . . . , 𝑛 − 1, the approximation to 𝑄1,𝑖 is obtained by 

integrating the approximation to the integrand 

𝑄1,𝑖 = (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖)
𝑥𝑖+1

𝑥𝑖

 𝑞(𝑥)𝑑𝑥 

≈ (
1

ℎ𝑖
)
2

∫ (𝑥𝑖+1 − 𝑥)(𝑥 − 𝑥𝑖)
𝑥𝑖+1

𝑥𝑖

[
𝑞(𝑥𝑖)(𝑥𝑖+1 − 𝑥)

ℎ𝑖
+
𝑞(𝑥𝑖+1)(𝑥 − 𝑥𝑖)

ℎ𝑖
] 𝑑𝑥 



77 | P a g e 
 

=
ℎ𝑖
12
[𝑞(𝑥𝑖) + 𝑞(𝑥𝑖+1)] 

Further, if 𝑞 ∈  𝐶2[𝑥𝑖 , 𝑥𝑖+1]then 

|𝑄1,𝑖 −
ℎ𝑖
12
[𝑞(𝑥𝑖) + 𝑞(𝑥𝑖+1)]| = 𝑂(ℎ𝑖

3) 

 

Approximations to the other integrals are derived in a similar manner and are given 

by 

𝑄2,𝑖  ≈
ℎ𝑖−1
12

[3𝑞(𝑥𝑖) + 𝑞(𝑥𝑖−1)], 

𝑄3,𝑖  ≈  
ℎ𝑖
12
[3𝑞(𝑥𝑖) + 𝑞(𝑥𝑖+1)], 

𝑄4,𝑖  ≈
ℎ𝑖−1
2
[𝑝(𝑥𝑖) + 𝑝(𝑥𝑖−1)], 

𝑄5,𝑖  ≈
ℎ𝑖−1
6
[2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)], 

and 

𝑄6,𝑖  ≈
ℎ𝑖
6
[2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖+1)]]. 

 

Illustration  

Consider the boundary-value problem 

−𝑦′′ +  𝜋2𝑦 =  2𝜋2 sin(𝜋𝑥), for 0 ≤  𝑥 ≤  1,with 𝑦(0)  =  𝑦(1)  =  0. 
Let ℎ𝑖 =  ℎ =  0.1, so that 𝑥𝑖  =  0.1𝑖, for each 𝑖 =  0, 1, . . . , 9.  
The integrals are 

𝑄1,𝑖 =  100∫ (0.1𝑖 +  0.1 −  𝑥)(𝑥 −  0.1𝑖)𝜋2
0.1𝑖+0.1

0.1𝑖

 𝑑𝑥 =  
𝜋2

60
, 

𝑄2, 𝑖 =  100∫ (𝑥 −  0.1𝑖 +  0.1)2𝜋2 
0.1𝑖

0.1𝑖−0.1

𝑑𝑥 =  
𝜋2

30
, 

𝑄3, 𝑖 =  100∫ (0.1𝑖 +  0.1 −  𝑥)2
0.1𝑖+0.1

0.1𝑖

𝜋2 𝑑𝑥 =   
𝜋2

30
, 

𝑄4, 𝑖 =  100∫ 𝑑𝑥
0.1𝑖

0.1𝑖−0.1

 =  10, 

𝑄5, 𝑖 =  10∫ (𝑥 −  0.1𝑖 +  0.1) 2𝜋2  sin 𝜋𝑥  
0.1𝑖+0.1

0.1𝑖−0.1

𝑑𝑥 

           =  −2𝜋 cos 0.1𝜋𝑖  +  20[sin(0.1𝜋𝑖)  − sin(0.1𝑖 −  0.1)𝜋)], 

and 
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𝑄6, 𝑖 = 10∫ (0.1𝑖 +  0.1 −  𝑥) 2𝜋2 𝑠𝑖𝑛 𝜋𝑥
0.1𝑖+0.1

0.1𝑖

 𝑑𝑥 

          = 2𝜋 cos 0.1𝜋𝑖 −  20[sin((0.1𝑖 +  0.1)𝜋)  −  sin(0.1𝜋𝑖)]. 

The linear system Ac = b has 

𝑎𝑖,𝑖 =  20 + 
𝜋2

15
, for each 𝑖 =  1, 2, . . . , 9, 

𝑎𝑖,𝑖+1  =  −10 +  
𝜋2

60
, for each 𝑖 =  1, 2, . . . , 8, 

𝑎𝑖,𝑖−1  =  −10 +  
𝜋2

60
, for each 𝑖 =  2, 3, . . . , 9, 

And 

 

𝑏𝑖  =  40 sin(0.1𝜋𝑖)[1 − cos 0.1𝜋 ], for each 𝑖 =  1, 2, . . . , 9. 

The solution to the tridiagonal linear system is 

𝑐9  =  0.3102866742, 𝑐8  =  0.5902003271, 𝑐7  =  0.8123410598, 

𝑐6  =  0.9549641893, 𝑐5  =  1.004108771, 𝑐4  =  0.9549641893, 

𝑐3 =  0.8123410598, 𝑐2 =  0.5902003271, 𝑐1  =  0.3102866742. 

The piecewise-linear approximation is 

𝜑(𝑥)  =∑𝑐𝑖𝜑𝑖(𝑥)

9

𝑖=1

, 

and the actual solution to the boundary-value problem is y(x) = sin πx. Table (14) lists 

the error in the approximation at xi, for 𝑒𝑎𝑐ℎ 𝑖 =  1, . . . , 9. 
 

 
i 𝑥𝑖 𝜑(𝑥𝑖) 𝑦(𝑥𝑖) |𝜑(𝑥𝑖) − 𝑦(𝑥𝑖)| 

1 0.1 0.3102866742 0.3090169943 0.00127 

2 0.2 0.5902003271 0.5877852522 0.00241 

3 0.3 0.8123410598 0.8090169943 0.00332 

4 0.4 0.9549641896 0.9510565162 0.00390 

5 0.5 1.0041087710 1.0000000000 0.00411 

6 0.6 0.9549641893 0.9510565162 0.00390 

7 0.7 0.8123410598 0.8090169943 0.00332 

8 0.8 0.5902003271 0.5877852522 0.00241 

9 0.9 0.3102866742 0.3090169943 0.00127 

Table (14)  
 

It can be showing that the tridiagonal matrix A given by the pricewise linear basis  

functions is positive definite, so, the linear system is stable with respect to round off 

error. Under the hypotheses presented at the beginning of this section, we have 

|𝜑(𝑥)  −  𝑦(𝑥)|  =  𝑂(ℎ2), for each x in [0, 1]. 
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B-Spline Basis 

The use of piecewise-linear basis functions results in an approximate solution to Eqs. 

(14) and (16) that is continuous but not differentiable on [0, 1]. A more sophisticated 

set of basis functions is required to construct an approximation that belongs to 𝐶0
2[0, 1]. 

These basis functions are similar to the cubic interpolatory splines . Recall that the 

cubic interpolatory spline S on the five nodes 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑎𝑛𝑑 𝑥4 for a function f is 

defined by: 

 

(a) S(x) is a cubic polynomial, denoted  𝑆𝑗(𝑥), on the subinterval [𝑥𝑗 , 𝑥𝑗+1] for each 

𝑗 =  0, 1, 2, 3; 

(b) 𝑆𝑗(𝑥𝑗) =  𝑓 (𝑥𝑗) 𝑎𝑛𝑑 𝑆𝑗(𝑥𝑗+1) =  𝑓 (𝑥𝑗+1)          for each 𝑗 =  0, 1, 2, 3; 

(c) 𝑆𝑗+1(𝑥𝑗+1) = 𝑆𝑗(𝑥𝑗+1)                                          for each 𝑗 = 0, 1, 2;  

(d) 𝑆′𝑗+1(𝑥𝑗+1) = 𝑆′𝑗(𝑥𝑗+1)                                       for each 𝑗 =  0, 1, 2; 

(e) 𝑆′′𝑗+1(𝑥𝑗+1) = 𝑆′′𝑗(𝑥𝑗+1)                                     for each 𝑗 =  0, 1, 2; 

(f) One of the following sets of boundary conditions is satisfied: 

(i) 𝑆′′(𝑥0)  =  𝑆′′(𝑥𝑛)  =  0                                       (Natural (or free) boundary); 

(ii) 𝑆′(𝑥0)  =  𝑓′(𝑥0) 𝑎𝑛𝑑  𝑆′(𝑥𝑛)  =   𝑓′(𝑥𝑛)          (Clamped boundary). 

 

Since uniqueness of solution requires the number of constants in (a), 16, to equal the 

number of conditions in (b) through (f), only one of the boundary conditions in (f) can 

be specified for the interpolatory cubic splines. 

The cubic spline functions we will use for our basis functions are called B-splines, or 

bell-shaped splines. These differ from interpolatory splines in that both sets of 

boundary conditions in (f) are satisfied. This requires the relaxation of two of the 

conditions in (b) through (e). Since the spline must have two continuous derivatives on 

[𝑥0, 𝑥4], we delete two of the interpolation conditions from the description of the 

interpolatory splines. In particular, we modify condition (b) to b. 𝑆(𝑥𝑗) = 𝑓 (𝑥𝑗) for 

𝑗 =  0, 2, 4.  

For example, the basic B-spline S defined next and shown in Figure 11.5 uses the 

equally spaced nodes 

𝑥0 = −2, 𝑥1 = −1, 𝑥2 = 0, 𝑥3 = 1, and 𝑥4 = 2 

It satisfies the interpolatory conditions b. 𝑆(𝑥0)  =  0, 𝑆(𝑥2)  =  1, 𝑆(𝑥4)  =  0; as well 

as both sets of conditions 

(i) 𝑆′′(𝑥0)  =  𝑆′′(𝑥4)  =  0 and  

(ii) 𝑆′(𝑥0)  =  𝑆′(𝑥4)  =  0. 
As a consequence, 𝑆 ∈  𝐶0

2(−∞,∞), and is given specifically as 
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𝑆(𝑥) =

{
 
 
 

 
 
 

0                                          if         𝑥 ≤ −2

  
1

4
(2 + 𝑥)3                                     if      − 2 ≤ 𝑥 ≤ −1 

  
1

4
[(2 + 𝑥)3 − 4(1 + 𝑥)3]       if     − 1 < 𝑥 ≤ 0  

1

4
[(2 − 𝑥)3 − 4(1 − 𝑥)3]      if          0 < 𝑥 ≤ 1

 
1

4
(2 − 𝑥)3                                if         1 ≤ 𝑥 ≤ 2

0                                             if           2 < 𝑥

             (25)  

 

We will now use this basic B-spline to construct the basis functions 𝜑𝑖  in 𝐶0
2[0, 1]. 

We first partition [0, 1] by choosing a positive integer n and defining  

ℎ =  1/(𝑛 +  1). This produces the equally-spaced nodes  

𝑥𝑖  =  𝑖ℎ, for each 𝑖 =  0, 1, . . . , 𝑛 + 1. 

We then define the basis functions {𝜑𝑖  }𝑖=0
𝑛+1 as 

 

 

𝜑𝑖 =

{
 
 
 
 
 

 
 
 
 
 𝑆 (

𝑥

ℎ
) − 4𝑆 (

𝑥 + ℎ

ℎ
)                                                                              if  𝑖 = 0

𝑆 (
𝑥 − ℎ

ℎ
) − 𝑆 (

𝑥 + ℎ

ℎ
)                                                                          if  𝑖 = 1

𝑆 (
𝑥 − 𝑖ℎ

ℎ
)                                                                                if 2 ≤  𝑖 ≤ 𝑛 − 1

𝑆 (
𝑥 − 𝑛ℎ

ℎ
) − 𝑆 (

𝑥 − (𝑛 + 2)ℎ

ℎ
)                                                        if  𝑖 = 𝑛

𝑆 (
𝑥 − (𝑛 + 1)ℎ

ℎ
) − 4𝑆 (

𝑥 − (𝑛 + 2)ℎ

ℎ
)                                   if  𝑖 = 𝑛 + 1

 

 

It is not difficult to show that {𝜑𝑖  }𝑖=0
𝑛+1 is a linearly independent set of cubic splines 

satisfying  

𝜑𝑖  (0)  = 𝜑𝑖  (1)  =  0, for each 𝑖 =  0, 1, . . . , 𝑛, 𝑛 +  1 
The graphs of       𝜑𝑖  , for 2 ≤  𝑖 ≤  𝑛 −  1, are shown in Figure 11.6, and the graphs 

of 𝜑0 , 𝜑1 , 𝜑𝑛 , 𝑎𝑛𝑑 𝜑𝑛+1 are in Figure 11.7. 
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Since𝜑𝑖(𝑥) and𝜑′𝑖(𝑥) are nonzero only for 𝑥 ∈  [𝑥𝑖−2, 𝑥𝑖+2], the matrix in the 

Rayleigh-Ritz approximation is a band matrix with bandwidth at most seven: 

 

 (26) 

 

where 

𝑎𝑖,𝑗  = ∫ {𝑝(𝑥)𝜑′
𝑖
(𝑥)𝜑′

𝑗
(𝑥)(𝑥) +  𝑞(𝑥)𝜑𝑖(𝑥)𝜑𝑗(𝑥)} 𝑑𝑥

1

0

, 

for each 𝑖, 𝑗 =  0, 1, . . . , 𝑛 +  1. The vector b has the entries 

𝑏𝑖  = ∫ 𝑓 (𝑥)𝜑𝑖(𝑥)
1

0

𝑑𝑥. 

The matrix A is positive definite, so the linear system Ac = b can be solved by 

Cholesky’s Algorithm or by Gaussian elimination.  

 

Illustration  
Consider the boundary-value problem 

−𝑦′′ + 𝜋2 𝑦 =  2𝜋2  sin(𝜋𝑥) , for 0 ≤  𝑥 ≤  1,with 𝑦(0) =  𝑦(1) =  0. 
we let h = 0.1 and generated approximations using piecewise-linear basis functions. 

Table (15) lists the results obtained by applying the B-splines  

 



82 | P a g e 
 

i 𝑐𝑖 𝑥𝑖 𝜑(𝑥𝑖) 𝑦(𝑥𝑖) |𝑦(𝑥𝑖) − 𝜑(𝑥𝑖)| 

0 0.50964361× 10−5 0.0 0.00000000 0.00000000 0.00000000 

1 0.20942608 0.1 0.30901644 0.30901699 0.00000055 

2 0.39835678 0.2 0.58778549 0.58778525 0.00000024 

3 0.54828946 0.3 0.80901687 0.80901699 0.00000012 

4 0.64455358 0.4 0.95105667 0.95105652 0.00000015 

5 0.67772340 0.5 1.00000002 1.00000000 0.00000020 

6 0.64455370 0.6 0.95105713 0.95105652 0.00000061 

7 0.54828951 0.7 0.80901773 0.80901699 0.00000074 

8 0.39835730 0.8 0.58778690 0.58778525 0.00000165 

9 0.20942593 0.9 0.30901810 0.30901699 0.00000111 

10 0.74931285× 10−5 1.0 0.00000000 0.00000000 0.00000000 

Table (15) 

 

We recommend that the integrations in Steps 6 and 9 be performed in two steps. First, 

Construct cubic spline interpolatory polynomials for p, q, and f using the methods 

presented in Section 3.5. Then approximate the integrands by products of cubic splines 

or derivatives of cubic splines. The integrands are now piecewise polynomials and can 

be integrated exactly on each subinterval, and then summed. This leads to accurate 

approximations of the integrals. 

The hypotheses assumed at the beginning of this section are sufficient to guarantee that 

 

{∫ |𝑦(𝑥)  −  𝜑(𝑥)|2 𝑑𝑥
1

0

}

1/2

=  𝑂(ℎ4), if 0 ≤  𝑥 ≤  1. 

 

Another popular technique for solving boundary-value problems is the method of 

collocation. The word collocation has its root in the Latin “co-” and “locus “indicating 

together with and place. It is equivalent to what we call interpolation. 

This procedure begins by selecting a set of basis functions {𝜑1, . . . , 𝜑𝑁}, a set of 

numbers {𝑥𝑖 , . . . , 𝑥𝑛} in [0, 1], and requiring that an approximation ∑ 𝑐𝑖  𝜑𝑖  (𝑥)
𝑁
𝑖=1  

satisfy the differential equation at each of the numbers 𝑥𝑖 , for 1 ≤ i ≤ n. If, in addition, 

it is required that 𝜑𝑖(0) =  𝜑𝑖(1)  =  0, for 1 ≤ 𝑖 ≤ 𝑁, then the boundary conditions 

are automatically satisfied. Much attention in the literature has been given to the choice 

of the numbers {𝑥𝑗} and the basis functions{𝜑𝑖}. One popular choice is to let the 𝜑𝑖 be 

the basis functions for spline functions relative to a partition of [0, 1], and to let the 

nodes {𝑥𝑗} be the Gaussian points or roots of certain orthogonal polynomials, 

transformed to the proper subinterval. 
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EXERCISE SET 11.5 

1. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-

value problem 

𝑦′′ +  
𝜋2

4
𝑦  =  

𝜋2

16
 cos

𝜋𝑥

4
, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  𝑦(1)  =  0 

using𝑥0 =  0,  𝑥1 = 0.3,  𝑥2 = 0.7,  𝑥3 =  1. Compare your results to the actual 

solution𝑦(𝑥)  = −
1

3
 cos

𝜋

2
 𝑥 −

√2

6
 sin

𝜋

2
𝑥  + 

1

3
 cos

𝜋

4
 𝑥. 

2. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-

value problem 

− 
𝑑

𝑑𝑥
(𝑥𝑦′) + 4𝑦 =  4𝑥2 −  8𝑥 +  1, 0 ≤  𝑥 ≤  1, 𝑦(0) = 𝑦(1) = 0  

using𝑥0 =  0,  𝑥1 = 0.4,  𝑥2 = 0.8,  𝑥3 =  1. Compare your results to the actual 

solution 𝑦(𝑥)  =  𝑥2 −  𝑥. 
3. Use the Piecewise Linear Algorithm to approximate the solutions to the following 

boundary-value problems, and compare the results to the actual solution: 

a.    −𝑥2𝑦′′ −  2𝑥𝑦′ +  2𝑦 =  −4𝑥2, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  𝑦(1)  =  0;  

       use ℎ =  0.1; actual solution        𝑦(𝑥) =  𝑥2 −  𝑥. 
b.  −(𝑥 +  1)𝑦′′ − 𝑦′ + (𝑥 +  2)𝑦 =  [2 − (𝑥 +  1)2]𝑒 ln 2 −  2𝑒𝑥,  
         0 ≤  𝑥 ≤  1, 𝑦(0)  =  𝑦(1)  =  0; use   h = 0.05;  

         actual solution 𝑦(𝑥)  =  𝑒𝑥  ln(𝑥 +  1) − (𝑒 ln 2)𝑥. 
4. Use the Cubic Spline Algorithm with n = 3 to approximate the solution to each of 

the following boundary-value problems, and compare the results to the actual 

solutions given in Exercises 1 and 2: 

a.  𝑦′′ + 
𝜋2

4
𝑦  =  

𝜋2

16
 cos

𝜋𝑥

4
, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  𝑦(1)  =  0 

b. −
𝑑

𝑑𝑥
(𝑥𝑦′)  +  4𝑦 =  4𝑥2 −  8𝑥 +  1, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  0, 𝑦(1)  =  0 

 

5. Show that the boundary-value problem 

− 
𝑑

𝑑𝑥
(𝑝(𝑥)𝑦′)  +  𝑞(𝑥)𝑦 =  𝑓 (𝑥), 0 ≤  𝑥 ≤  1, 𝑦(0)  =  𝛼, 𝑦(1)  =  𝛽, 

        can be transformed by the change of variable 

       𝑧 =  𝑦 −  𝛽𝑥 − (1 −  𝑥)𝛼 into the form 

− 
𝑑

𝑑𝑥
(𝑝(𝑥)𝑧′)  +  𝑞(𝑥)𝑧 =  𝐹(𝑥), 0 ≤  𝑥 ≤  1, 𝑧(0) =  0, 𝑧(1)  =  0. 

 

6. Use Exercise 6 and the Piecewise Linear Algorithm with n = 9 to approximate the 

solution to the boundary-value problem 

−𝑦′′ +  𝑦 =  𝑥, 0 ≤  𝑥 ≤  1, 𝑦(0)  =  1, 𝑦(1)  =  1 + 𝑒−1. 
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