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Initial-Value Problems for Ordinary Differential Equations

The Elementary Theory of Initial-Value Problems

Differential equations are used to model problems in science and engineering that
involve the change of some variable with respect to another. Most of these problems
require the solution of an initial-value problem, that is, the solution to a differential
equation that satisfies a given initial condition.

In common real-life situations, the differential equation that models the problem is too
complicated to solve exactly, and one of two approaches is taken to approximate the
solution. The first approach is to modify the problem by simplifying the differential
equation to one that can be solved exactly and then use the solution of the simplified
equation to approximate the solution to the original problem. The other approach,
which we will examine in this chapter, uses methods for approximating the solution of
the original problem. This is the approach that is most commonly taken because the
approximation methods give more accurate results and realistic error information.
The methods that we consider in this chapter do not produce a continuous
approximation to the solution of the initial-value problem. Rather, approximations are
found at certain specified, and often equally spaced, points. Some method of
interpolation, commonly Hermite, is used if intermediate values are needed.

We need some definitions and results from the theory of ordinary differential equations
before considering methods for approximating the solutions to initial-value problems.

Definition (1):

A function f (x,y)is said to satisfy a Lipschitz condition in the variable y on a set
D c R?if aconstant L > 0 exists with

If (y1) = f (6,)] < Llys — ¥,l, Whenever (x,y;)and (x,y,)are in D. The
constant L is called a Lipschitz constant for f.

Example 1

Show that f (x,y) = x|y| satisfies a Lipschitz condition on the interval
D={xy)|1l1 <x<2and —3 <y < 4}

Solution

For each pair of points (x, y;)and (x, y,) in D we have

If (o) = f oyl = |xlyl = xlyal| = Ixl|ly] = 1y2l] < 2 yy — v-

Thus f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2.
The smallest value possible for the Lipschitz constant for this problem is L = 2,
because, for example,

If(2,1)—-f(2,0)=12-0=2/1-0|.

Definition (2):

Aset D c R? issaid to be convex if whenever (x,,y;) and(x,,y,) belongto D, then

((1 = A)x; + Axy, (1 — )y, + Ay,)also belongs to D for every 4 in [0, 1].

In geometric terms, Definition (2) states that a set is convex provided that whenever
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two points belong to the set, the entire straight-line segment between the points also
belongs to the set. The sets we consider in this chapter are generally of the form
D={(ty)|a x< band — o <y oo} for some constants a and b. It is easy to
verify that these sets are convex.

Theorem (1):
Suppose f (x,y) is defined on a convex set D < R2. If a constant L > 0 exists with

of (x,
%SLforall (x,y) €D

Then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

As the next theorem will show, it is often of significant interest to determine whether
the function involved in an initial-value problem satisfies a Lipschitz condition in its
second variable, and condition (1) is generally easier to apply than the definition. We
should note, however, that Theorem (1) gives only sufficient conditions for a Lipschitz
condition to hold. The function in Example 1, for instance, satisfies a Lipschitz
condition, but the partial derivative with respect to y does not exist when y = 0.

The following theorem is a version of the fundamental existence and uniqueness
theorem for first-order ordinary differential equations. Although the theorem can be
proved with the hypothesis reduced somewhat, this form of the theorem is sufficient
for our purposes.

Theorem (2):

Suppose that D ={(x,y)|a<x < band —o <y <o}and that f(x,y) Iis
continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the
initial-value problem

y'=fly)la<x<by(a=a

has a unique solution y(x) fora < x < b.

Example 2

Use Theorem (2) to show that there is a unique solution to the initial-value problem
y' =1+xsinxy,0<x<2,y(0)=0

Solution

Holding x constant and applying the Mean Value Theorem to the function

f(x,y) =1+ xsinxy

We find that when y; < y,, anumber £in (y;,y,), exists with

f(x;yl) _f(x'yZ) _ af(xrf)
Y1 = Y2 dy

= x?%coséx

Thus

Iy = ¥2l = ly1 — y2llx®coséx| < 4ly; — v,
and f satisfies a Lipschitz condition in the variable y with Lipschitz constant L = 4.
Additionally, f(x,y) is continuous when 0 < x <2 and —wo <y < oo, S0 Theorem (2)
implies that a unique solution exists to this initial-value problem.
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EXERCISE (1)

(1) Use theorem (2) to show that each of the following initial-value problems has a
unique solution, and find the solution.
(@) y = ycosx, 0<x<1, y(0)=1.

(b)y’z%ﬂzex,gxgz, y(1)=0.

©)y'= —Z%JrXZeX, 1<x<2, y(1)=+2e

3
@y =4 0<x<1 yO=1
1+ x
(2) Picard’s method for solving the initial-value problem
y'=f(xy)a <x < byl = a,
is described as follows:
Let yo(x) = a foreach xin [a, b].
Define a sequence {y; (x)} of functions by

Vi(x) = «a +j f(t,yp-1(t))dr ,k = 1,2,....

(a) Integrate y' = f (x,y), and use the initial condition to derive Picard’s
method.
(b) Generate y,(x),y,(x),y,(x)and y;(x) for the initial-value problem
y=-y+x+ 1,0 <x < 1,y0) = 1.
(c) Compare the result in part (b) to the Maclaurin series of the actual solution
X

y(x) = x+ e™*.

Euler’s Method

Euler’s method is the most elementary approximation technique for solving initial-
value problems. Although it is seldom used in practice, the simplicity of its derivation
can be used to illustrate the techniques involved in the construction of some of the more
advanced techniques, without the cumbersome algebra that accompanies these
constructions. The object of Euler’s method is to obtain approximations to the well-
posed initial-value problem

Y =fy,a<x<byla)=a (1)

A continuous approximation to the solution y(x) will not be obtained; instead,
approximations to y will be generated at various values, called mesh points, in the
interval [a, b].

Once the approximate solution is obtained at the points, the approximate solution at
other points in the interval can be found by interpolation.

We first make the stipulation that the mesh points are equally distributed throughout
the interval [a, b]. This condition is ensured by choosing a positive integer N and
selecting the mesh points
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X, =a+ kh, foreach k=0,1,2,3,...,N
The common distance between the points h = b%a = Xj+1 — X IS called the step size.

We will use Taylor’s Theorem to derive Euler’s method. Suppose that y(X), the unique
solution to (1), has two continuous derivatives on [a, b], so that for each
k =0,1,2,3,....N —1

2

’ X —X "
V(%) =y (xp) + (Xp1 — x5 )y (Xk)+( ]”12 k) V"' ($k) (2)
For som number & € (x4, x4 1) becouse A= xy 1 — x4, We have

! hz 144

J’(Xk+1):Y(Xk)+bY(Xk)+7Y (k) 3)
and, because y(x) satisfies the differential equation (1),

L
Y(Xk+1)ZY(Xk)+]1f(Xk’J’k)+7Y ($k) (4)

Euler’s method constructs w;, = y(x;), for each k = 1, 2. . . N, by deleting the
remainder term. Thus Euler’s method is
wop=a,

Wiio1= Wy + h f(x;,wy),foreach k=0,1,..., N-1. (5)
Illustration
Euler’s method to approximate the solution to

y=y—-x*4+10<t < 2,y(0) = 0.5,
at x = 2. Here we will simply illustrate the steps in the technique when we have h =0.5.

For this problemf (x,y) = vy —x% + 1,s0
W1 =Wy +hf (x4,wy ) foreachk=0,1,... ,N-1.

Wil =Wy +h(wy —sz +1),foreachk=0,1,...,N-1.
wo=y(0)=0.5;
W1 =W +0.5(w —sz +1),foreachk=0,1,...,N-1.

wq =y(X1)=w(0.5)=y0+0.5(w0—(0.0)2+1)=0.5+0.5(1.5)=1.25;

wo=y(x9) =w(1.0) =mwy +0.5(W1 —(0.5)2 +1) =1.25+0.5(2.0)=2.25;

2

W3:y(X3)=y(1.5)=W2+0.5(W2—(1.0) +1):2.25+0.5(2.25)=3.375;

wy =y(x4)=y(2)=ws +0.5(W3 —(1.5)2+1) =3.375+0.5(2.125)=4.4375.

Equation (5) is called the difference equation associated with Euler’s method. As we
will see later in this chapter, the theory and solution of difference equations parallel, in
many ways, the theory and solution of differential equations.
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Example 3
Euler’s method was used in the first illustration with h = 0.2 to approximate the
solution to the initial-value problem
y=y —x*+10<t <2 y(0) =05,
with N = 10 to determine approximations, and compare these with the exact values

given by y(x)=(x+1)%>-0.5¢%.
Solution
With N = 10 we have h=0.2, x;, =0.2k, y3=0.5 ,and

What =W+ h(wy — x4 +1)
=wy +0.2h(w . —(0.2k)* +1)

=1.2wj —0.008k% +0.2
for k=0,1,..., 9.50

wy =1.2(0.5)—0.008(0)%> +0.2=0.8
wy =1.2(0.8) —0.008(1)% +0.2=1.152

and so on. Table (1) shows the comparison between the approximate values at x
and the actual values

k Xk Yi=y(xg) ‘Yexact_Yk‘

0 O 0.5 0
0.2 0.8 0.029298621
0.4 1.152 0.062087651
0.6 1.5504 0.0985406
0.8 1.98848 0.138749536

1 2.458176 0.182683086
1.2 2.9498112 0.230130339
1.4  3.45177344 0.280626577
1.6 3.950128128 0.33335566
1.8 4.428153754 0.387022514
0 2 4865784504 0.439687446

_ OO NOUTLESE WN -

Table (1)

Note that the error grows slightly as the value of t increases. This controlled error
growth is a consequence of the stability of Euler’s method, which implies that the
error is expected to grow in no worse than a linear manner

Error Bounds for Euler’s Method

Although Euler’s method is not accurate enough to warrant its use in practice, it is
sufficiently elementary to analyze the error that is produced from its application.
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Theorem (3)

Suppose f is continuous and satisfies a Lipschitz condition with constant L on

D ={(x,y)|a <x< band — o < y < oo} and that a constant M exists with

| v'| < M, for all x € [a,b], where y(x) denotes the unique solution to the initial-
value problemy’ = f (x,¥),a <x < b,y(a) =

Let wy, wy,...,wy be the approximations generated by Euler’s method for some
positive integer N. Then, foreach K = 0,1, 2,...,N,

hM | 1(x,—
| Vg Wk | Sz(e (X a)—l)

Proof
When k= 0 the result is clearly true, since y(x,) = wy, = «.
From equation (4)

2

YV(Xps1)=y(xg)+hf(xg, yg)+ %Y"(fk)

fori=0,1,...,N—1, and from the equations in (5),
Wirr = Wi + hf (o, wy)
Using the notation y;, = y(xy) and yi+1 = y(xk4+1), We subtract these two equations
to obtain
2

b "
Vi1 ~Wi1 =Yk —Wk)+h(f(Xk’Y(Xk))—f(Xk,Wk))Jr?,V ($k)
Hence
hz
Vi1 WiV k _Wk‘"‘h‘f(XkJ’k)_f(Xk’Wk)“"?‘y”(Szk)‘

Now f satisfies a Lipschitz condition in the second variable with constant L, and
|y ()] < M, so

B2
Pkt = Wi Sy —wi| ALy g —wi|+ =)

h2M
Va1 Wil <|Vi - Wk\(1+11L)+T
112 sz
<|Vg1-Wi1|(Q+ AL + =25 (1+ ALY +
hZM h2M ]12M

<|yi_p—wi_o|(1+hL)> + (1+ AL)? + = (1 hL)+

1+(A+AL)+(1+ lzL)2 +.o.+ 1+ hL)k isa geometrlc series with ratio (1+ AL)

Its sum
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2
V1 —Wis1|< 7o —WO‘(1+]7L)k+1 +bTM(1+(1+bL)+(1+bL)2+...+(1+h[,)k)
sz(l—(1+bL)k+1j

k+1
< —wp|(1+ AL +
o —wol( ) 2 | 1o h)

Because |yo—wg|=0, xj,1—Xo=xg,q—aand (1+ hL)k 1 < ofEHD) i

implies that

n°M ket \ o BOM (et | M L(x, -a)
W< (1+bL —1)3—(e —1)3—(e —1)
k41 = Wi T ( ) ThL ThL

foreachk =0,1,...,N — 1.

The weakness of Theorem (3) lies in the requirement that a bound be known for the
second derivative of the solution. Although this condition often prohibits us from
obtaining a realistic error bound, it should be noted that if df /dt and df /3y both exist,
the chain rule for partial differentiation implies that

y'(x) = dy'/dx = df/dx
= 0f/0x(x,y(x)) + 0f/dy(x,y(x)) * f (x y(x)).

So it is at times possible to obtain an error bound for y'(t) without explicitly knowing
y(0).

Example 4
The solution to the initial-value problem
y=y—x*+4+ 1,0 <x< 2,y(0) = 0.5,
was approximated in Example 3 using Euler’s method with h = 0.2. Use the inequality
in Theorem (3) to find a bounds for the approximation errors and compare these to the
actual errors.
Solution
Since f(x,y) =y — x? + 1, we have dof (x,y)/dy = 1forally,soL=1.For
this problem, the exact solution is
y(x) = (x+ 1)? — 0.5e*,
soy'’(x) = 2 — 0.5e¢* and
|y (t)] < 0.5e%— 2, forall x € [0, 2].
Using the inequality in the error bound for Euler’s method with h =0.2, L = 1, and
M = 0.5e? — 2 gives
Vi —wi| < 0.1(0.5e? — 2)(e*x — 1).

Hence
| ¥(0.2) — wy| <0.1(0.5e% — 2)(e®? —1) = 0.03752;
| ¥(0.4) — w,| <0.1(0.5e% — 2)(e®*—1) = 0.08334;
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and so on. Table (2) lists the actual error found in Example 3, together with this error
bound. Note that even though the true bound for the second derivative of the solution
was used, the error bound is considerably larger than the actual error, especially for
increasing values of x.

X, Approximate

solution exact solution Actual Error Error Bound
0.2 0.8 0.829298621 0.029298621 0.037517318
04 1.152 1.214087651 0.062087651 0.083341075

0.6 1.5504 1.6489406  0.0985406  0.139310337
0.8 1.98848 2.127229536 0.138749536 0.207671348
1 2.458176  2.640859086 0.182683086 0.291167676
1.2 2949811 3.179941539 0.230130339 0.39315032

1.4 3.451773 3.732400017 0.2806265/7/7 0.517712204
1.6 3.950128 4.283483788 0.33335566 0.669852432
1.8 4.428154 4.815176268 0.387022514 0.855676927

2 4.865785 5.305471951 0.439687447 1.082643477
Table (2)

The principal importance of the error-bound formula given in Theorem (3) is that the
bound depends linearly on the step size h. Consequently, diminishing the step size
should give correspondingly greater accuracy to the approximations.

Neglected in the result of Theorem (3) is the effect that round-off error plays in the
choice of step size. As h becomes smaller, more calculations are necessary and more
round off error is expected. In actuality then, the difference-equation form

wop=a,

Wii1= Wi+ h f(x;,,wy),foreach £=0,1,..., N-1.

is not used to calculate the approximation to the solution y, at a mesh point x; .We
use instead an equation of the form

wop=a+ 50
Up, 1= Ui+ h f(Xk,LIk) + §k+1,for each k=0,1,..., N-1.
where &) denotes the round-off error associated withuy . Using methods similar to

those in the proof of Theorem (3), we can produce an error bound for the finite-digit
approximations to y, given by Euler’s method.
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EXERCISE (2)

(1) Use Euler’s method to approximate the solutions for each of the following
initial-value problems

@)y’ = xe> ¥ -2y, 0<x<1, y(0)=0, with h=0.5
(b)y':1+(X—y), 2<x<3, y(2)=1, with h=0.5
(C)y'=1+£, 1<x<2, y()=2 with Ah=025
(d)y'=cos 2x +sin 3x, 0<x<1, y(0)=1, with h=0.25

(2) The actual solutions to the initial-value problems in Exercise 1 are given here.
Compare the actual error at each step to the error bound.

3 -2
(@) y(x)= —Xe 2—156' X+2—156' X

(6) () =x+

©y(x)=xInx+2x

(d) y(x) = 1S|n2)(—§c053x+;L

Higher-Order Taylor Methods

Since the object of a numerical techniques is to determine accurate approximations
with minimal effort, we need a means for comparing the efficiency of various
approximation methods. The first device we consider is called the local truncation
error of the method.

The local truncation error at a specified step measures the amount by which the exact
solution to the differential equation fails to satisfy the difference equation being used
for the approximation at that step. This might seem like an unlikely way to compare
the error of various methods. We really want to know how well the approximations
generated by the methods satisfy the differential equation, not the other way around.
However, we don’t know the exact solution so we cannot generally determine this, and
the local truncation will serve quite well to determine not only the local error of a
method but the actual approximation error.

Definition (3)
Consider the initial value problem
y'=fy)a <x<by(a) =

The difference equation
Wii1= W+ h f(x,,wy), wyg= a,for each £=0,1,..., N-1.
has local truncation error r;,; where

Vi~ it A, ) Vi~
I+1 — ]] - ]]

—f(x;,y;), foreach;/=0,1,...,N-1
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Where y; and y, , denote the solution at x,; and x respectively.

i+1?
For example, Euler’s method has local truncation error at the ith step
Vi~V
Tiv —%_f(’(ﬂyf)'

foreachi=0,1,...,N—1

This error is a local error because it measures the accuracy of the method at a specific
step, assuming that the method was exact at the previous step. As such, it depends on
the differential equation, the step size, and the particular step in the approximation. By
Considering Eq. (4) in the previous section, we see that Euler’s method has

7, ()= )’"(f ), for some ¢&;in (x;,x;,1)
When y”(X) is known to be bounded by a constant M on [a, b], this implies

|7, (D] <= h M, so the local truncation error in Euler’s method is O (h).
2

One way to select difference-equation methods for solving ordinary differential

equations is in such a manner that their local truncation errors are O(4)? for as large

a value of p as possible, while keeping the number and complexity of calculations of
the methods within a reasonable bound.
Since Euler’s method was derived by using Taylor’s Theorem with n = 1 to
approximate the solution of the differential equation, our first attempt to find methods
for improving the convergence properties of difference methods is to extend this
technique of derivation to larger values of n.
Suppose the solution y(x) to the initial-value problem

y'=fy)a <x <bya) =
has (n + 1) continuous derivatives. If we expand the solution, y(x), in terms of its nth

Taylor polynomial about x, and evaluate at x we obtain

2

Y(¥141) = y(x)+hy(x)+” )+ T () 4 y (&), (6)
n! ( +1).

i+1

forsome §; e(x;,%; ¢)
Successive differentiation of the solution, y(x), gives

Y0 =F(x,y(x)),y"(x)=F(x,(x)), and, generally, y ) (x) = £ ¥ (x, y(x)).
Substituting these results into Eq. (6) gives
2

h
)’(Xi+1)=Y(Xi)+bf(XjJ’i)+ f(X1!.V1)+ S f(n Vix; )

]]11+1

+
(n+1)!
The difference-equation method corresponding to Eq. (7) is obtained by deleting

FD(&, y (&), (7)
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the remainder term involving &, .

Taylor method of order n
Wy =a
h* h"
Wi =W1-+/]f(X1-,W1-)+;f'(X1-,WI-)+...+—If(n_1)(X1-,Wl-) for 1=1,2,3,..,N-1
: .

Euler’s method is Taylor’s method of order one.

Example 5
Apply Taylor’s method of orders (a) two and (b) four with N = 10 to the initial-value
problem

y'=y—-—x*+1, 0<tx< 2,y(0) = 0.5.
Solution
(a) For the method of order two we need the first derivative of
f(x,y(x)) = y — x?+ 1 with respect to the variable x. Because
y' =y —x*+1
we have f'(t,y()) = %(y —x*+1)=y' - 2x=y—x*+1—-2x
o)

2

n
Wi =w;+hf (fi’Wi)Jr?f (x;,w;)

2
Wi =W; +/7(W1-—X1-2 +1)+%(W1- —XI-2 + 1—2X1-)

]]2
Wi+1:WI'+]](W1'—X1'2+1)+7(W1'—X1'2+1—2X1')

Wi =W; +b|:(1+§j(Wi —XI-Z + 1)—]1X1-i|

Because N = 10 we have h = 0.2, and x,; =0.2/ foreachi = 1,2, ...,10. Thus the

wo = 05,
Woq=w, 0.2{(1 4 %j(w,- —0.047%+ 1) - 0.0411

w1 =1.22w;—0.0088;% —0.0088/ +0.22

The first two steps give the approximations
y(0.2) = wl = 1.22(0.5) — 0.0088(0)2 — 0.008(0) + 0.22 = 0.83;
y(0.4) = w2 = 1.22(0.83) — 0.0088(0.2)2 — 0.008(0.2) + 0.22 = 1.2158

All the approximations and their errors are shown in Table (3)
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Xj

Approximate

exact solution

Error

solution

0 0 0.5 0.5 0

1 02 0.83 0.829298621 0.000701379
2 04 1.2158 1.214087651 0.001712349
3 0.6 1.652076 1.6489406 0.0031354

4 0.8 213233272  2.127229536 0.005103184
5 1.0 2.648645918 2.640859086 (0.007786833
6 1.2 3.19134802 3.179941539 0.011406482
7 1.4 3.748644585 3.732400017 0.016244568
8§ 1.6 4.306146394 4.283483788 (0.022662606
9 1.8 4.8462986 4.815176268 (0.031122332
10 2.0 5.347684292 5.305471951 (0.042212342

Table 3: Taylor Order 2

(b) For Taylor’s method of order four we need the first three derivatives of f (x, y(x))
with respect to x. Again usingy’ = y —x? + 1 we have

flle,y) =y —x*+
f'y) =y - 2x -

=y—-—x*+1-2x—-2=y — x?

WOZQ'

Wiy =w;+hf (x;w;)+

=w; +]1

fori = 0,1,..., N — 1.

]] 1
Ef (Xi’Wi)

1 — 2x
2

2

2

- X; +1)+h—(Wl-—X1-2+1—2XI-)+
2!

(b+—+—j —X,.2+1)—

3

h 1
+§f (Xf’Wf)

3

3

v

— 2x—1,

]]ZXI—]]?(XI'F].)

Because N = 10 and h = 0.2 the method becomes
w;,1=1.2214w; —0.008856 ;* —0.00856/ +0.2186

foreachi = 0,1,...,

9. The first two steps give the approximations

XIZ—ZXI—].)

y(0.2) = wl = 1.2214(0.5) — 0.008856(0)2 — 0.00856(0) + 0.2186 = 0.8293;
y(0.4) = w2 = 1.2214(0.8293) — 0.008856(0.2)2 — 0.00856(0.2) + 0.2186

= 1.214091

All the approximations and their errors are shown in Table (4).
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Approximate exact

Xi solution solution Error
0 0.5 0.5 0
0.2 0.8293 0.82929862 1.37908E-06

0.4 1.21409102 1.21408765 3.36882E-06
0.6 1.648946772 1.6489406 6.17202E-06
0.8  2.127239587 2.12722954 1.00514E-05
1.0  2.640874432 2.64085909 1.53459E-05
1.2 3.179964031 3.17994154 2.24922E-05
1.4  3.732432067 3.73240002 3.20507E-05
1.6  4.283528527 4.28348379 4.47392E-05
1.8  4.815237743 4.81517627 6.14751E-05

10 2.0 5.305555379 5.30547195 8.34286E-05
Table (4) Taylor Order 4

© 00 N O O B W DN P O

Compare these results with those of Taylor’s method of order 2 in Table (4) and you
will see that the fourth-order results are vastly superior. The results from Table (4)
indicate the Taylor’s method of order 4 results are quite accurate at the nodes 0.2, 0.4,
etc. But suppose we need to determine an approximation to an intermediate point in
the table, for example, at x = 1.25. If we use linear interpolation on the Taylor method
of order four approximations at x = 1.2 and x = 1.4, we have

1.25 — 1.2
14 — 1.2

4
12 )3.1799640 + )3.7324321 = 3.3180810

198 1.2
y(' )~(1.2_ .

The true value is y(1.25) = 3.3173285, so this approximation has an error of
0.0007525,which is nearly 30 times the average of the approximation errors at 1.2 and
1.4We can significantly improve the approximation by using cubic Hermit
interpolation. To determine this approximation for y(1.25) requires approximations to
y(1.2) and y(1.4)as well as approximations to y(1.2) and y(1.4). However, the
approximations for y(1.2) and y(1.4) are in the table, and the derivative
approximations are available from the differential equation, because y'(x) = f (x,y).
In our example y'(x) = y(x) —x? + 1,50

y'(1.2) = y(1.2) — (1.2)2 + 1 =~ 3.1799640 — 1.44 + 1 = 2.7399640
and
y’(1.4) = y(1.4) — (1.4)2 + 1

Q

3.7324327 — 196 +1 = 2.7724321.
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EXERCISE (3)
(1) Use Taylor’s method of order two to approximate the solutions for each of the
following initial-value problems.

() y' =xe>* -2y, 0<x<1, y(0)=0, with A=0.5
(b)y'=1+(x—y)? 2<x<3, y(@2)=1 with A=0.5
(C)y':1+£, 1<x<2,  y(1)=2 with A~=0.25
(d)y'=cos 2x + sin 3x, 0<x<1, y(0)=1, withh=0.25

(2) Repeat Exercise 1 using Taylor’s method of order four.

(3) Given the initial- value problem
Xzy’:l—Xy—XzyZ, 1<x<2, y(1)=-1

With the exact solution y =—x"1

(@) Use Taylor’s method of order two with 2=0.05 to approximate the solution
and compare it with the actual values of y .

(b) Use the answer generated in part (a) and linear interpolation polynomial to
approximate the value y(1.052) and y(1.555).

(c) Use Taylor’s method of order four with ~A=0.05 to approximate the
solution and compare it with the actual values of y .

(d) Use the answer generated in part (a) and cubic interpolation polynomial to
approximate the value y(1.052) and y(1.555).

Runge-Kutta Methods

The Taylor methods outlined in the previous section have the desirable property of
high order local truncation error, but the disadvantage of requiring the computation and
evaluation of the derivatives of f(x,y). This is a complicated and time-consuming
procedure for most problems, so the Taylor methods are seldom used in practice.
Runge-Kutta methods have the high-order local truncation error of the Taylor
methods but eliminate the need to compute and evaluate the derivatives of f(x, y).

Before presenting the ideas behind their derivation, we need to consider Taylor’s
Theorem in two variables.

Theorem (4) 5.13

Suppose that f(x,y) and all its partial derivatives of order less than or equal ton + 1
are continuous on

D ={(x,y)|a < x< bc <y < d}

and let(xq, o) € D. For every(x,y) e D, there exists ¢ between x and x;, and u
between y and y, with

f(x,y)=P,(x,y)+R,(x,y),
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Where

P”(X’y):f(XO’-VO)+|:(X_X0)W+(y—yo)%§/’yo):|

2 A2 2 2 A2
X —Xx0)" 0°f(xq, 0°f(xq, - 0°f (xq,
| &= x0) ( 02)’0)+(X_X0)(y_y0) (x0.50) , O = x0) ( 02Y0) N

{i > (’;j(x 50" (- yo) M}

n! ;g ox" oy’

B 1 n+lfn+1 nel-j ; 8n+1f(f,,u)
and R”(X'y)_(n+1)!]§0( j(X X0) (v =x0) ox iy

The function P,(x,y)is called the nth Taylor polynomial in two variables for the
function fabout(x, y(),and R, (x, y) is the remainder term associated with 7, (x, y)

Runge-Kutta Methods of Order Two

Consider the differential equation

y'=f(x,y), a<x<b, y(a)=a (8)

Since we want to construct a second-order method, we start with the Taylor expansion
2

y(x+b)=y(x)+hy'(x)+’77y"(x)+0(b3)

The first derivative can be replaced by the right-hand side of the differential equation
(8), and the second derivative is obtained by differentiating (8),

\ of of 6f of
(X)——f(Xy)——+—y ——t+ - f
ox Oy 8X oy
Substltute in (1)
2
y(x+h) = y(x)+ bt () + [ L L £k ) |+ 0087
2\ox 0oy
= y(x)+— f(X y)+— Foo ) + B n %l (x ) |+ 00 (9)
ox oy
Recalling the multlvarlate Taylor expansion
f(x+hy+k)=F(x, y)+b2—f+k2—f 0(h%) (10)
4

We see that the expression in bract in (9) is

f(X+]],y+]]f)=f(X,y)+bg—f+]]f( )£+ Therefor we get
X oy
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y(x+h)=y(x)+ L (x, )+ LF(x+ by + hf) +O(h)
=y (x)+2(F(x,y)+ F(x+h,y+hf))+0(h)
= y(x)+L(ky + ky) + O(1°)

Runge-Kutta Methods of Order Two
WO =a
ky=f(x;,y;)
kz :f(XI' +b,y1' +bk1)
h )
Wi =W; +E(k1 +k2) for 1:0,1,2,...,N—1
Midpoint Method
WO =a
k= hf (Xi’Wi)
Wiy =w;+hf (x; +g,wi +%k), fori=0, 1,....N —1.
Modified Euler Method

Wo = Q,
k=hf x; ,w;

W1-+1:W,-—|—§[f x; w; +f x;11 ,W1-+k)] fori=0,1,... ,N -1

Example 6
Use the Midpoint method and the Modified Euler method with N =10, h=0.2,
x; = 0.2i,and w, = 0.5, to approximate the solution to our usual example,

y=y-x2+1,0<x<2, y(0)=05.

Solution
The difference equations produced from the various formulas are
Midpoint method: w1 =1.22w; —0.0088i% —0.008/ +0.218;

Modified Euler method: wiy1=122w; — 0.0088/% —0.008/ +0.216 ,
foreachi = 0,1,...,9.

The first two steps of these methods give
Midpoint method: wy =1.22(0.5) — 0.0088(0)* —0.008(0) + 0.218 = 0.828;

Modified Euler method: wq = 1.22(0.5) — 0.0088(0)% —0.008(0) +0.216 = 0.826
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Midpoint method:

wy =1.22(0.828) — 0.0088(0.2)> —0.008(0.2) +0.218 =1.21136
Modified Euler method:

wo =1.22(0.826) — 0.0088(0.2)2 —0.008(0.2) +0.216 =1.20692
Table 5 lists all the results of the calculations. For this problem, the Midpoint method

IS superior to the Modified Euler method.

x;  y(x;) Midpoint Error Modified Euler Error
Method Method

0.0 0.5000000 0.5000000 O 0.50000000 O
0.2 0.8292986 0.8280000 0.0012986 0.8260000  0.0032986
0.4 12140877 1.2113600 0.0027277 1.2069200  0.0071677
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982
0.8 21272295 2.1212842 0.0059453 2.1102357 0.0169938
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715
1.2 3.1799415 3.1704634 0.0094781  3.1495789 0.0303627
1.4 3.7324000 3.7211654 0.0112346  3.6936862 0.0387138
1.6 4.2834838 4.2706218 0.0128620  4.2350972 0.0483866
1.8 4.8151763 4.8009586 0.0142177  4.7556185 0.0595577
2.0 53054720 5.2903695 0.0151025  5.2330546 0.0724173

Table (5)

Higher-Order Runge-Kutta Methods
The term7®) (x,y) ) can be approximated with error 0(173) by an expression of the

form f(x +aq, ¥y +81f (x + ay, v + 8>f (x,y))), involving four parameters, the
algebra involved in the determination of aq,d87,a;, and &, is quite involved. The

most common 0(/13) is Heun’s method, given by

Heun’s method

WOZQ'

ky=hf(x;,y;)
ky=hf(x; +3hw; + k)

k= hf (x; +2hw; +2ky)

Wj+1:W1'+% kl +3k3

for/ =0, 1,...
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Ilustration
Applying Heun’s method with ¥ =10,42=0.2,x; =0.2/, and w; =0.5 to

approximate the solution to our usual example,
y'=y-x*+1, 0<x<2, y(0)=05

gives the values in Table (6) Note the decreased error throughout the range over the

Midpoint and Modified Euler approximations.

X; y( Xi) Heun’s Method Error

0.0 0.5000000  0.5000000 0

0.2 0.8292986  0.8292444 0.0000542
0.4 1.2140877  1.2139750 0.0001127
0.6 1.6489406  1.6487659 0.0001747
0.8 2.1272295  2.1269905 0.0002390
1.0 2.6408591  2.6405555 0.0003035
1.2 3.1799415  3.1795763 0.0003653
14 3.7324000  3.7319803 0.0004197
1.6 42834838  4.2830230 0.0004608
1.8 48151763  4.8146966 0.0004797
2.0 5.3054720  5.3050072 0.0004648

Table (6)

Runge-Kutta methods of order three are not generally used. The most common
Runge-Kutta method in use is of order four in difference-equation form, is given by
the following.

Runge-Kutta Order Four
wl=a,

k= hf (x;,w;),

ky = hf (x; +4,wi + 1 ky),
ky=hf (x; +2,wi+1i),
ky = hf (xj4q,w; +k3),

Wit1=W; —|—%(k1 +2k2 -|—21(3 +k4), fori=0,1,...,N—1.

This method has local truncation error O(4,), provided the solution y(x) as five
continuous derivatives. We introduce the notation 4, &5, k3, k4 into the method is to
eliminate the need for successive nesting in the second variable of £ (¢, y).
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Example 7

Use the Runge-Kutta method of order four with h = 0.2, N = 10, and x; =0.2/ to
obtain approximations to the solution of the initial-value problem

y'=y-x*+1,0<x<2 y(0)=05

Solution

The approximation to y(0.2) is obtained by

WO =0.5

ky{ =0.2£(0, 0.5)=0.2(1.5)=0.3
ky =0.2£(0.1, 0.65) =0.328

k3 =0.2£(0.1, 0.664) =0.3308
ky =0.2£(0.2, 0.8308) =0.35816

wy = 0.5+ 16(0.3+ 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.

The remaining results and their errors are listed in Table (7).

Table (7)

Exact

Runge-Kutta

X y; = y(x;) Order Four [J’i _ WIJ
0.0 0.5000000 0.5000000 0.0

0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272027 0.0000269
1.0 2.6408591 2.6408227 0.0000364
1.2 3.1799415 3.1798942 0.0000474
1.4 3.7324000 3.7323401 0.0000599
1.6 4.2834838 4.2834095 0.0000743
1.8 4.8151763 4.8150857 0.0000906
2.0 5.3054720 5.3053630 0.0001089
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EXERCISE (4)

(1) Use the Modified Euler method to approximate the solutions to each of the
following initial-value problems, and compare the results to the actual values.

(@ y'=xe>¥ -2y, 0<x<1, y(0)=0, with h=0.5;

Actual solution y(X):%Xe3X —2—15e3X +%e‘2X.

) y'=1+(x—y)?, 2<x<3, y(2)=1, withh=0.5
Actual solution y(X):X—|—ﬁ .

(© y'=1+Z, 1<x<2, y(1)=2 with h=0.25 ;
Actual solution y(x)=xInx + 2x.

(d) y'=cos 2x +sin 3x, 0< x <1, y(0) =1, with 2=0.25;
Actual solution y(x) :% sin 2x — L cos 3X—f—% :

3
(4) Repeat Exercise 1 using the Midpoint method.

(5) Repeat Exercise 1 using the Runge-Kutta method of order four.

(6) Show that Heun’s method can be expressed in difference form, similar to that of
the Runge-Kutta method of order four, as

wpy=a,

kl :]]f(XI',WI'),
ky=hf (x;+8,wi+1ky),
kg = hf (x; + 22, wi + 2 ey,
Wj+1 :Wi +%(k1 +3k3),
foreach 7=0,1,...,.N—1

(7) The Runge-Kutta method of order four can be written in the form
wpy=a,

Wi+1 =W;j +gf (XI',WI')-I-gf(XI' —I—alh,wi +51]1f (Xf’Wi))
+2F(x; +arhw; +Ehf (x; +y2hwi +yshf (x;,w)))
‘l‘gf(XI' +a'3]1,W1' +§3]1f(X1' +}/4[1,W1' +}/5]1f(X1' +}/6]1,W1' +}/7]1f(X1,W1))))

Find the values of the constants
a1,02,03,81,62,03,¥2,¥3, V4, V5, Ve, andy7.
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Multistep Methods
The methods discussed to this point in the chapter are called one-step methods because
the approximation for the mesh point x;, 1 involves information from only one of the

previous mesh points, x,. Although these methods might use function evaluation
information at points betweenx;and x;,q, they do not retain that information for

direct use in future approximations. All the information used by these methods is
obtained within the subinterval over which the solution is being approximated.
The approximate solution is available at each of the mesh points x;, x7,..., x,; before

the approximation at x;q is obtained, and because the error ‘w]- —y(x j)‘ tends to

increase with j, so it seems reasonable to develop methods that use these more accurate
previous data when approximating the solution at x;,q. Methods using the

approximation at more than one previous mesh point to determine the approximation
at the next point are called multistep methods. The precise definition of these methods
follows, together with the definition of the two types of multistep methods.

Definition (4):
An m-step multistep method for solving the initial-value problem

y' = f(xy)a <x < b, y(a) = a, (11)

has a difference equation for finding the approximation w;,,at the mesh point x;, 4
represented by the following equation, where m is an integer greater than 1:

Wit1 = AQquoaWi T A oWi—g + -+ QoWiy1-m
+h[bp f (Xiv1, Xiv1) + Dot f (i ;) + -+ bo f (Xip1-m» Xit1-m)] (12)
fori = m-1m,...,N — 1,

where h = (b — a)/N, the Am—1,Adm—2,--4 and bm'bm—ll""bO'
are constants, and the starting values

. Wog=0a,Wy = a1, W =0aAy,..., Wi 1 = Om-1
are specified.

When b, =0 the method is called explicit, or open, because Eq. (12) then gives
w1 explicitly in terms of previously determined values. When b5,,, = 0 the method
is called implicit, or closed, because w;, 1 occurs on both sides of Eq. (12), so w;
is specified only implicitly.
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For example,
The equations

woy=a,wq1 =aq1,Wy =ap,W3=a3

h
Wi =wj+o 55 (5 wy) =59 (xpq.wiq) +37F (%2, 2) =9 (xj—3.w;3)]

foreachi=3,4,...,N—1, (13)
define an explicit four-step method known as the fourth-order Adams-Bashforth
technique.

The equations
wop=a,wq1=a1,Wyr=ay

Wiyl =W +2121_[9f(Xi+1’W1'+1) +19f(x;j,w;) =5F(x;1.w; 1) +£(x;_2.w; )],
foreachi=2,3,...,N-1, (14)
define an implicit three-step method known as the fourth-order
Adams-Moulton technique.

The starting values in either equation (13) or (14) must be specified, generally by
assuming w, = a and generating the remaining values by either a Runge-Kutta or
Taylor method. We will see that the implicit methods are generally more accurate then
the explicit methods, but to apply an implicit method such as (14) directly, we must
solve the implicit equation for w; 1. This is not always possible, and even when it

can be done the solution for w;_ 1 may not be unique.

Example 8
In Example (7) see Table (7) we used the Runge-Kutta method of order four with
h = 0.2 to approximate the solutions to the initial value problem

y =y — x4+ 1,0< x < 2,y(0) = 0.5.

The first four approximations were found to be
y(0) = w0 = 0.5,

y(0.2) ~ wl = 0.8292933,

y(0.4) ~ w2 = 1.2140762

,and y(0.6) = w3 = 1.6489220.

Use these as starting values for the fourth-order Adams-Bashforth method to compute
new approximations for y(0.8) and y(1.0), and compare these new approximations to
those produced by the Runge-Kutta method of order four.

Solution
For the fourth-order Adams-Bashforth we have
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y 0.8 %W4:W3—I—%[55f 0.6,w3 —59f 0.4,w, +37f 0.2,w; —9f O,w0 ]

—1.6489220+0.224[55f (0.6,1.6489220) —59¢ (0.4,1.2140762)
+37F (0.2,0.8292933)—9£(0,0.5)]
—1.6489220-+0.0083333 §5(2.2889220)—59(2.0540762) +37(1.7892933)~ 9(L5)"
21272892
and
Y(1.0) 2w —w, +%(55f (0.8,w4) —59F (0.6,w3)
+37f (04—,W2)—9f (OZ,Wl))
:2.12728924—%(5% (0.8, 2.1272892) — 59¢ (0.6, 1.6489220)

+37f (0.4, 1.2140762) — 9F (0.2, 0.8292933))
=2.1272892 + 0.0083333(55(2.4872892) — 59(2.2889220)
+37(2.0540762) —9(1.7892933)) = 2.6410533

The error for these approximations at x= 0.8 and x = 1.0 are, respectively

|2.1272295 — 2.1272892| = 5.97 x 10-5 and |2.6410533 — 2.6408591| = 1.94 x 10*.
The corresponding Runge-Kutta approximations had errors
|2.1272027 — 2.1272892| = 2.69 x 10-5 and |2.6408227 — 2.6408591| = 3.64 x 10°°.

Adams-Bashforth method
To begin the derivation of a multistep method, note that the solution to the initial-value
problem

y'=fxy)a <x<bya) = a
if integrated over the interval[x;,x; 1] , has the property that

XjiH1 Xi+1
yxi)-yx)= [ y@dc= [ F(x,y(x))dx.
Consequently, 1 1

Xj+1
y(xi)=yx)+ [ f(x,y(x))dx.. (15)

However we cannot integrate f (x, y(x)) without knowing y(x), the solution to the
problem, so we instead integrate an interpolating polynomial P(x) to f (x, y(x)), one
that is determined by some of the previously obtained data points

(x0.wp), (x1,w71),...,(x;,w;). When we assume, in addition, that y (x;) ~w;,

Eq. (15) becomes
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Xi+1

V(x;j 1 )=w;+ f Pt dt. 16

Xj
To derive an Adams-Bashforth explicit m-step technique, we form the backward
difference polynomial 7, 1 (x) through (x;.£7), (X1, F7-1) s

(Xj—1+4m fi—1+m) Wheref; = £ (x;, y(x;)).
Since P,,_1(xX) is an interpolator polynomial of degree m-—1, some number
&N X0 p,x; exists with

£ (f,,y(si» o)

f(x,y(x))= Py 1(X)+ Xj—1)-(X = Xj41-m)

Introducing the variable substltutlonX x;+sh ,with dt =hds, into 7, 1(¢) and
the error term implies that

Xi4+1 Xj+1 Xi+1 m—1 _
f f (x,y)dx = f P,,_1dx= f > (—1)k P ka(X,-,y,-)dX
X; X; X; k=0
X (m)
b EEERTED) (s ) X
X; m:
Xi+1
f f(x,y)dx = Z thf(XI,yl)( 1)kf ]ds
X, k=0 k
bm+1 1
+ J )41l m - (&, v (E))ds

The integral /7, = (—1)kf
0

B ]ds for various values of k are easily evaluated and are

listed in Table( 8)

k Ii
0 1
1 1
2
5 S
12
3
3 _
8
,
720
95
5 _
288

Table (8)
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— k-1
And we use the relation [ ks] = (- 1)‘1‘ S ]

k

(s+2)(s+1)s
3!

2
For example, when k = 3, [ ] (-1) [S+ ]

(- 1)"]

As a consequence,

31

]a’s—( 1) f [ S] s = M] (s)(s+1)(s+2)——

Xi41 5
f f (x,y)dx = b[f(xl,yl)—k Vf(X,,y,)+ sz(XI,yI)—i—
XI

— [ (s + (s +m-DF PN gy (17)
0
Because s(s + 1) ...(s + m — 1) does not change sign on [0, 1], the Weighted

Mean Value Theorem for Integrals can be used to deduce that for some number y; ,
wherex; 1, <p; <x;,1 ,theerror termin Eq. (17) becomes

bm+1 1
f ($)(s + 1) (s +1—m)F (&, y(&,)ds

_+_

m+1 0 (m),,, W 1
_Ah Ty y () [ (s)s+1)..(s+m—1)ds

m!

0
1
_md e (my, oy SN F (s +m—1)
=m0 f (ﬂz’J’(lh)){ - ds
Hence the error in (17) simplifies to
1 (_
Epy= 0" F U up y () ()™ | [ S]ds (18)
0 m
Xi+1
But y(x;11)=y(x)+ [ f(x,y(x))dx.
Xi
so Eq. (15) can be written as
m—1
yxi)=y)+h S VG )L+ BT gy () Dy (19)
k=0
1 —S
Where (—1)% |/ ]ds
o |k
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Example 9
Use Eqg. (19) with m = 3 to derive the three-step Adams-Bashforth technique.

Solution
We have

1 5
V(x;i11)=y(x;)+h f(XiJ’i)+5Vf(X1'uV1')"‘Evzf(Xi’J’i)+---

1
f(Xi’YI)+E f(xp,yi)—f(x;_1,7i-1)
=y(x;)+h

5
+E f(xj,y;))—2f(x;_1,y;i-1)+f(x;_2,Vi_2)

h }
.V(XH—l) =y(x;) +E [3f(X1".V1') —16f(x;—1,7j-1)+ Sf(Xi—Z!yi—Z)_

Then the general form

h
y(xi1)=y(x;) +E 23f(x;,y;)—16f(x;_1,7;-1) +5f(x;_2,V;_2)

3
By =" Dy ) I = 20" £ Oy (7))

The three-step Adams-Bashforth method is, consequently,
woyp=a, w1 =aq, Wyp =ap,

h
Wil =Wt 23f (xj,w;) —16f(x; 1.w; 1) +5f(x; 2,w; 3)
fori=2,3,...,N—1.

Multistep methods can also be derived using Taylor series. An example of the
procedure involved is considered in following Exercise

EXERCISE (5)
(1) Derive the Adams-Bashforth Three-Step method by the following method. Set

.V(Xi+1) = y(x;)+ahf (x;,y;)+bhtf (x;_q,y;_1) +chf (x;_2,¥;_2)
Expand £(x;,y;),f(x;_1,¥;—1)and f(x;_o,y;_2) in Taylor series about
(x;,¥;),and equate the coefficients of h, h2 and h3 to obtain a, b, and c.

(2) (a) Derive the Adams-Bashforth Two-Step method by using the Lagrange

form of the interpolating polynomial.
(b) Derive the Adams-Bashforth Four-Step method by using Newton’s

backward-difference form of the interpolating polynomial.
(3) Derive Simpson’s method by applying Simpson’s rule to the integral
Xj+1
yxi)—yx)= [ f(x,y(x)adx.

Xj
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The local truncation error for multistep methods is defined analogously to that of
One-step methods. As in the case of one-step methods, the local truncation error
provides a measure of how the solution to the differential equation fails to solve the
difference equation.

Definition (5)
If y(x) is the solution to the initial-value problem
y'=f®y,a <x< by = qa

and
Wit =am Wi tam Wi 1+ * * +agW;ii1_m
+hbpf (X . Wig1) F by 1 f (xpwi)+ o+ bof (X1 mWis1—m)]

is the (i + 1)st step in a multistep method, the local truncation error at this step is

Wil —dm—1W; —dm-2Wi1——adyWit1—-m
h

Tit1=
—[bpf (xj 1. Wig1) + by 1f (xjw;) +oo+bof (Xj 31— mWiv1-—m)] (20)
foreachi=m—-—1m,...,N — 1.

Example 10
Determine the local truncation error for the three-step Adams-Bashforth method
derived in Example 9.

Solution
Considering the form of the error given in Eq. (18) and the appropriate entry in Table
8 gives

1 (_
Ep=0""F Uy y () (—1)™ [ [ S]ds
0 m

1 (_ 4
E3=h* £ O (uy, y (1)) (~1)° 1l [ 35]615 =%b4 £ O,y (1)
0

Using the fact that B (i, ¥y ()= y(4) (#;) and the difference equation derived in
Example 9, the truncation error is

y(xi)-y(x;) 1
Tiy1= 1+1h ! 1 23f(x;,y;)—16f(x; 1, ¥; 1) +5F(x; 2,5 2)

_1
h

3pt 343
& =2 Oy y () Forwpe x; g%

O v () 8
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Adams-Bashforth Explicit Methods

Some of the explicit multistep methods together with their required starting values and
local truncation errors are as follows. The derivation of these techniques is similar to
the procedure in Examples 9 and 10.

Adams-Bashforth Two-Step Explicit Method
Use Eq. (19) with m = 2 to derive the two-step Adams-Bashforth technique.

m-—1 k &
y(xp)=y&x)+h Y VEF (xpy)(=DF [

1 —S
k=0 0

k

ds

1 (_
+ B () ()™ [ S]ds
0 m

' 1 | 5
(i) =y () +h|F (xjy )+ VE Gey) |00 £ O gy ()

' 1 [
(i) =y ) I (g )+ SV Gy )| 00 F D Gy )
h 5
y i) =y )+ ¥ )~ £ iy - D8 P )

wo=a,wq = a1,

h
Wii1=W; +E 3f (x;,wi)—f (x;_1.,w;—1) (21)

Where i = 1,2,...,N — 1.

: : 5
The local truncation error is 7; ¢ :Ehz y(g)(/,z,-) forsome ;€ x; 1,x;41

Adams-Bashforth Three-Step Explicit Method
When m = 3 we derive the three-step Adams-Bashforth technique
wop=a, w1 =aq, Wy =ay,

(22)

h
Wiyl =W; +ﬁ 23f (x;,w;)—16f(x;_q,w;_1)+5f(x;_2,w;_3)

Where i = 2,3,...,N — 1.

30 3)
5 £ (g, y(up)) forsome u;€ x; 9,x711
Adams-Bashforth Four-Step Explicit Method

when m = 4 to derive the four-step Adams-Bashforth technique
Wo =a, w1 =aq, Wy :a'z,W3 :a3

The local truncation erroris 7,1 =

(23)

h
Wit1 =W; +ﬁ 55f(x;,w;)=59f(x; 1, w; 1) +37f(x;_p,w; ) —9f(x;_3.W;_3)

Where i = 3,4,...,N — 1.
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25144
720

The local truncation erroris 7;,1 = £& (w5, v (147))

forsome y; € x; 3,x;11

Adams-Bashforth Five-Step Explicit Method
Put m =5 to derive the five-step Adams-Bashforth technique
wop=a, wq1=aq, Wp =aQp,W3 =a3,Wy =ay

B [1901F (x;,w;) — 2774F (x;_1,w;_q) +2616f (x;_p.w;_)| (24)
Wiy =w;j+

720 —1274f(X1'_3,W1'_3) +251f(X1'_4,W1'_4)
Where i = 4,5,...,N — 1.

95 A

>88 Oy, y (1))

The local truncation erroris 7;,q =

for some Ui € Xj_4,Xj11q

Adams-Moulton Implicit Methods

Implicit methods are derived by using (X;,1,f(x;,1,¥7(x;51))) as an additional
interpolation node in the approximation of the integral

Xi41

f f(x,y)dx

Xi

To begin the derivation of Adams-Moulton Implicit Methods, note that the solution
to the initial-value problem

y'=fxy)a <x<by(a) = a,
if integrated over the interval[x;,x;, 1] , has the property that

Xi+1 Xj+1

y(xp)—yx)= [ yx)dx= [ f(x,y(x))dx.
Consequently, 1 1

Xi+1
YD) =yt [ Fxy(x)ds. (15)

However we cannot integrate f (x, y(x)) without knowing y(x), the solution to the
problem, so we instead integrate an interpolating polynomial P(x) to f (x, y(x)), one
that is determined by some of the previously obtained data points

(x0,wp), (x1,w1),- . . (x;,w;),(X;11,w;1) When we assume, in addition, that

y(x)=w;,
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Xi41
Eq. (15) becomes  y(x;,q )~w,;+ [ Pt dt. (16)
Xj
Although any form of the interpolating polynomial can be used for the derivation, it is
most convenient to use the Newton backward-difference formula including the point
(X;11,w;11) , because this form more easily incorporates the most recently calculated

data.
To derive an Adams-Moulton Implicit Methods m-step technique, we form the
backward difference polynomial 2,,(x) through the set of points

Xip1:Fi01 (50 05 (%10 £ 1) o (X1 1 m) Where £ = £(x;, 7 (x;)).
Since P, (x) is an interpolator polynomial of degree m, some number

Stiin Xit1—-mXi+1
exists with

B R (I L)
f(X,y(X))—Pm(X)ﬂL (4 1)! (x —

Introducing the variable substitution x = x,; + sA , with dt = h ds, into 7,,(¢) and the
error term implies that

Xip)x—x)x—x;1) © (x—x;11_m)

Xiiq Xj41 Xi+1 m
ff(Xy)dX—f PdX—f Z(l)

1 1 1

vkf(XH—l Viq1)dx

¥ipr plmtl) (€56,

+ f i+1)(X_Xi)"'(X_Xi+1_m)dX

0 (m+1)!
1+1 —S—l_l)
[ F(x,p)dx= S BV Kf(xjs1 7)) (=D f d
X; 0

k=

1

f (s —1)(s)(s +1)...(s + m =)D (&, y(&,))ds
! 0

L (—s+1
The integral 7, = (— 1)k | S]:L ]ds for various values of k are easily evaluated and
0

are listed in the following table

And we use the relation _S] —(—1)k|° +k_1]
k k
For example, when k = 3, ] (1) [S +2] (s +2)§'S +1)s
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1
1 __1
2
2 __1
12
3 __1
24
4 —-53
60

As a consequence,

Xj+1 1 5
[ f(x,y)dx=h f(XH—l’J’H—l)"‘Evf(Xi—HJ’i—H)+Evzf(Xi+1’Yi+1)+---
Xi
A2E D Gy ()
: -1 1)... -1 17
(1) {(S )($)(s +1)...(s + m—1)ds (17)

_|_

Because (s —1)s(s + 1)...(s + m — 1) does not change sign on [0, 1], the
Weighted Mean Value Theorem for Integrals can be used to deduce that for some
number u; , wherex; 1, <u; <x;.1 ,theerrortermin Eq. (17) becomes

pmte 1 . . . - (1) .
] ETDENs D+ 1=m) (&1, 7(&;)ds
m+2 » (m+1) 1
A g () [ (s=1)(s)(s +1)...(s + m—1)ds

(m+1)! 0

1
_amt2 o (ml) _ (s=1D(s)(s+1)..(s+m—-1)
=h"Tef (e, 7 (1) { (4 1)! ds
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Hence the error in (17) simplifies to

=0 D (g, () (1) f (SHD] s (18)
Xi+1
But y(x;41)=y(x)+ [ f(x,y(x))dx.

Then the difference equation is

m
V(xi1)=y(x;)+h 3 ka(Xi+1’Yi+1)-[k+bm+2 FP D (v () Iy

k=0
kl —s+1 m+11 —s+1
Where 7, =(—1)* [ ds and |/, =(—=1)""" [ P ds
0

When m = 2 we drive Adams-Moulton Two-Step method
Consider f; =f(x;11,Vi11)-

2
V(xi)=y(x;)+h 3 vEr (Xjs1, Vig1) g+ B £ O (wj,y (1)) A
k=0

¥ (i41) = &) 4| lofyaq 4 Vi + V4 |

—s—+1

1
—b* FO®) (uy, y (1)) f[ 3
0

}B
1 1 o2 h* )
:J’(Xi)‘|‘]7[fi+1'_§Vfi+1 —13V fin ]—ﬁf (1,7 (144))

]14
=y ) = G Dy G =26+ g Do Ay ()

4
= y(x; )+ [ j11-+8f; — 1]_;141((3)(/11".11(/11'))

Adams-Moulton Two-Step Implicit Method
wo=a, w1 =aq1

(25)

h
Wil =W; +E[5f(Xi+1’Wi+1) +8f (x;w;) — £ (xj_1,w;_1)]

where i =1,2,3,...,N — 1.

The local truncation erroris 7,1 = 24f( i,y (1)
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forsome ;€ x; 1,%;11

Adams-Moulton Three-Step Implicit Method
wog=a, wqi=a1, Wyp=ay

7 (26)
Wiyl =w; +ﬁ[9f(Xi+1’Wi~l—1) +19F (x;,w;) —5F(x; 1. w; 1)+ F(x;_2.w; 5)]

where i =2,3,...,N — 1.
—194%
720

The local truncation erroris  7;,1 = £A (i, v (1))

forsome p; € x;_o,x;11

Adams-Moulton Four-Step Implicit Method

Wwop=a, wqp=a1, Wyp=0ap, W3 =as3

h
Wi—{-l = Wi —f—%[ZSlf(Xi_‘_l,Wj_‘_l) —|—64‘6f(X1,W1) —264f(X1'_1,W1'_1) (27)

+106f(x; p.,w; 2) —19f(x; 3,w; 3)]
where i =3,4,...,N — 1.

a5
The local truncation erroris 7,1 = %f(s) (i, v (1))

forsome ;€ x; 3,%;11

It is interesting to compare an m-step Adams-Bashforth explicit method with an
(m — 1) —step Adams-Moulton implicit method. Both involve m evaluations of f per

step, and both have the terms f ml (i, 12;)A™ in their local truncation errors. In

general, the coefficients of the terms involving f in the local truncation error are smaller
for the implicit methods than for the explicit methods. This leads to greater stability
and smaller round-off errors for the implicit methods.

Example 11
Consider the initial-value problem
y'=y —x*+10<x<2  y(0) = 0.5.
Use the exact values given from y(x) = (x + 1)? — 0.5e* as starting values and
h = 0.2 to compare the approximations from
(a) By the explicit Adams-Bashforth four-step method and
(b) The implicit Adams-Moulton three-step method.

Solution
(a) The Adams-Bashforth method has the difference equation
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wop=a, w1 =aq, Wp =ap,Ww3 =as
h
Wis1 =Wit+oo 55f(x;w;)—59f(x; 1, w; 1) +37f(x;_ow; _2)—9f(x; 3.w;_3)

Fori =3,4,...,9.
When simplified using f(x,y) =y —x*+ 1, h = 0.2,

Wi = [35w; 1 —11.8w; 1 +7.4w; 5 —1.8w; 3—0.192/°—0.192/+4.736]

(b) The Adams-Moulton method has the difference equation
W1 =W; (9 (X1 W) +19F (x;,w;) =5 (x;_1.w,_1) + £ (X;_2.w;_5)],

for i =2,3,...,9. This reduces to
Wii1 :i[m Wiiq +27.8w;—w;_1+0.2w;_5—0.192/% —0.192/ +4.736].

To use this method explicitly, we need to solve the equation explicitly solve for w; ¢
This gives

Wit =525[27.8w; —w; 1 +0.2w; 5 —0.192/° —0.192/ +4.736],
for i=23,...,9.

The results in Table (9) were obtained using the exact values from

y(x) = (x + 1)? — 0.5e* for a, ai, a, and a3 in the explicit Adams-
Bashforth case and for @, a4, ,and a, inthe implicit Adams-Moulton case. Note that
the implicit Adams-Moulton method gives consistently better results.

Xi Exact wi AB Error AM Error

0.0 0.5000000

0.2 0.8292986

0.4 1.2140877

0.6 1.6489406 1.6489341 0.0000065
0.8 21272295 2.1273124 0.0000828 2.1272136 0.0000160
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527

2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132
Table (9)
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Predictor-Corrector Methods

In Example 9 the implicit Adams-Moulton method gave better results than the explicit
Adams-Bashforth method of the same order. Although this is generally the case, the
implicit methods have the inherent weakness of first having to convert the method
algebraically to an explicit representation forw,, 1 . This procedure is not always

possible, as can be seen by considering the elementary initial-value problem
y =eY,0<x< 0.25, y(0) = 1.
Because f(t,y) = e”, the three-step Adams-Moulton method has

Wil =W; —i—% 9e"it1 119" —5e"i-1 4 e"i-2

as its difference equation, and this equation cannot be algebraically solved for w; ;.
We could use Newton’s method or the secant method to approximate w; 1, but this

complicates the procedure considerably. In practice, implicit multistep methods are not
used as described above. Rather, they are used to improve approximations obtained by
explicit methods. The combination of an explicit method to predict and an implicit to
improve the prediction is called a predictor-corrector method.

Consider the following fourth-order method for solving an initial-value problem. The
first step is to calculate the starting values wy,w,w-and w for the four-step explicit

Adams-Bashforth method. To do this, we use a fourth-order one-step method, the
Runge-Kutta method of order four. The next step is to calculate an approximation,
Wap 10 y(xy) using the explicit Adams-Bashforth method as predictor:

W4p =w3 —|—2—]zl-[55f(X3,W3) —59f(X2,W2) +37f(X1,W1) —9f(X0,W0)].

This approximation is improved by inserting w4p in the right side of the three-step
implicit Adams-Moulton method and using that method as a corrector. This gives

Wy =w3 +L[9f (x4,wy ) +19f (x3,w3) = 5£ (x2,W3) + £ (x1,w1)].

The only new function evaluation required in this procedure is f(x4,Wyp) in the

corrector equation; all the other values of f have been calculated for earlier
approximations.
The value w, is then used as the approximation to y(x,), and the technique of using

the Adams-Bashforth method as a predictor and the Adams-Moulton method as a
corrector is repeated to find w5, andws, the initial and final approximations to y(xs)
This process is continued until we obtain an approximation wc to y (X ) = y(b).

Improved approximations to y(x;,1) might be obtained by iterating the Adams-

Moulton formula, but these converge to the approximation given by the implicit
formula rather than to the solution y(x;,1). Hence it is usually more efficient to use

a reduction in the step size if improved accuracy is needed.
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Example 12

Apply the Adams fourth-order predictor-corrector method with h = 0.2 and starting

values from the Runge-Kutta fourth order method to the initial-value problem
y=y—-x*+10<x<2  y(0) =

Solution

This is continuation and modification of the problem considered in Example 9

at the beginning of the section. In that example we found that the starting

approximations from Runge-Kutta are

y(0)=wy=0.5, y(0.2) ~wq =0.8292933, y(0.4) ~w, =1.2140762, and
y(0.6) ~w5=1. 6489220 and the fourth-order Adams-Bashforth method gave

(0.8)~wy,=w3 —|— (55f(0 6,w3) —59f(0.4,w,) +371(0.2,wq) —9£(0,wy))

=1.6489220 + 32 (55/(0.6, 1.6489220) —59/ (0.4, 1.2140762)

+37£(0.2, 0.8292933) —9£(0, 0.5))
—1.6489220 + 0.0083333(55(2.2889220) —59(2.0540762) + 37(1.7892933)
—9(1.5)) = 2.1272892.

We will now use w4p as the predictor of the approximation to y(0.8) and determine
the corrected value w4, from the implicit Adams-Moulton method. This gives

y(0.8) ~

— w3+ 32[9£(0.8,wy,) +19£(0.6,w3) —5£(0.4,w3) + £(0.2,w1)]
—1.6489220+ 92 0.2 2(9£(0.8, 2.1272892) +19£(0.6, 1.6489220)

—5£(0.4, 1.2140762) + £(0.2, 0.8292933))
—1.6489220 + 0.0083333(9(2.4872892) + 19(2.2889220)

—5(2.0540762) + (1.7892933)) = 2.1272056
Now we use this approximation to determine the predictor, Wsp, for y(1.0) as

y(l.O) %W5p
—wy +% 2(55f(0 8,w4) —59f(0.6,w3) +37£(0.4,wy) —9f(0.2,wy))

=2.1272056 + %2(55/(0.8, 2.1272056) —597(0.6, 1.6489220)

+37£(0.4, 1.2140762) —9£(0.2, 0.8292933))
=2.1272056 + 0.0083333(55(2.4872056) — 59(2.2889220) + 37(2.0540762)
—9(1.7892933)) = 2.6409314
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and correct this with
y(1.0)~wg=wi+ %[9f(1.0,w5p) +19£(0.8,w4) —5£(0.6,w3) + £(0.4,w,)]

=2.1272056 + $2(9£(1.0, 2.6409314) +19£(0.8, 2.1272892)
—5£(0.6, 1.6489220) + £(0.4, 1.2140762))

= 2.1272056 + 0.0083333(9(2.6409314) + 19(2.4872056) — 5(2.2889220)
+(2.0540762)) = 2.6408286

In Example 9 we found that using the explicit Adams-Bashforth method alone
produced results that were inferior to those of Runge-Kutta. However, these
approximations to y(0.8)and y(1.0) are accurate to within

2.1272295 — 2.1272056| = 2.39 x 10
and [2.6408286 — 2.6408591| = 3.05 x 10>,

respectively, compared to those of Runge-Kutta, which were accurate, respectively, to
within

2.1272027 —2.1272892| = 2.69 x 10
and [2.6408227 — 2.6408591| = 3.64 x 107°,

The remaining predictor-corrector approximations were generated using Algorithm 5.4

and are shown in Table (10)

xp o yi=y) o ow; vi—wi|
0.0 0.5000000 0.5000000 0

0.2 0.8292986 0.8292933  0.0000053
04 1.2140877 1.2140762  0.0000114
06 1.6489406 1.6489220  0.0000186
08 21272295 2.1272056  0.0000239
1.0 2.6408591 2.6408286  0.0000305
12 3.1799415 3.1799026  0.0000389
1.4 3.7324000 3.7323505  0.0000495
1.6  4.2834838 4.2834208  0.0000630
1.8 4.8151763 4.8150964  0.0000799
2.0 5.3054720 5.3053707  0.0001013

Table (10)
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Stability

A number of methods have been presented in this chapter for approximating the

solution to an initial-value problem. Although numerous other techniques are available,

we have chosen the methods described here because they generally satisfied three

criteria:

 Their development is clear enough so that you can understand how and why they
work.

« One or more of the methods will give satisfactory results for most of the problems
that are encountered by students in science and engineering.

« Most of the more advanced and complex techniques are based on one or a
combination of the procedures described here.

One-Step Methods

In this section, we discuss why these methods are expected to give satisfactory results
when some similar methods do not. Before we begin this discussion, we need to present
two definitions concerned with the convergence of one-step difference-equation
methods to the solution of the differential equation as the step size decreases.

Definition (6)5.18
A one-step difference-equation method with local truncation error z;(4) at the ith step
Is said to be consistent with the differential equation it approximates if

lim Max ‘TI-(]])‘ =0.
h—0 1<i<N

Note that this definition is a local definition since, for each of the values z;(4), we
are assuming that the approximation w, 4 and the exact solution y(x;_;) are the

same. A more realistic means of analyzing the effects of making h small is to determine
the global effect of the method. This is the maximum error of the method over the
entire range of the approximation, assuming only that the method gives the exact result
at the initial value.

Definition (7)
A one-step difference-equation method is said to be convergent with respect to the
differential equation it approximates if

lim Max ‘Wi—y(Xi)‘ =0.
h—0 1<i<N

where y(x;)denotes the exact value of the solution of the differential equation and
w; is the approximation obtained from the difference method at the ith step.

A method is convergent if the solution to the difference equation approaches the
solution to the differential equation as the step size goes to zero.
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Example 13

Show that Euler’s method is convergent.
Solution

the error-bound formula for Euler’s method, is

hM _
Max |y -wy| <——(e*P=3) _q)
1<k<N 2L
However, M, L, a, and b are all constants and

lim  Max |y —wy| < lim M (@l0-2) _1y_g

h—0 1<k<N h—0 2L

So Euler’s method is convergent with respect to a differential equation satisfying the
conditions of this definition. The rate of convergence is O(h). A consistent one-step
method has the property that the difference equation for the method approaches the
differential equation when the step size goes to zero. So the local truncation error of a
consistent method approaches zero as the step size approaches zero. The other error-
bound type of problem that exists when using difference methods to approximate
solutions to differential equations is a consequence of not using exact results. In
practice, neither the initial conditions nor the arithmetic that is subsequently performed
Is represented exactly because of the round-off error associated with finite-digit
arithmetic.

Theorem (5):
Suppose the initial-value problem
y'=f(xy)a <x < bya) = q,
Is approximated by a one-step difference method in the form
wy = «, Wiy1 = w; + ho(x;,w;, h).
Suppose also that a number h, > 0 exists and that ¢ (x,w, h) is continuous and
satisfies a Lipschitz condition in the variable w with Lipschitz constant L on the set
D ={(xwh)|la<x <band —o< w < 0,0 < h < hy}.
Then
(i) The method is stable;
(if) The difference method is convergent if and only if it is consistent, which is
equivalentto ¢(x,y,0) = f (x,y),foralla < x < b;
(iii) If a function 7 exists and, foreachi = 1,2,..., N, the local truncation error
7;(h) satisfies |7;(h) | < 7(h) whenever0 < h < hy, then
') iexi-a)
I e .

ly(x;)) — wy| <

Example 14
The Modified Euler method is given by
wpy=a,

Wi =wi+ 8 F(xp W)+ F(xpwi+ B (xw;)),
fori=0,1,....N—1.
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Verify that this method is stable by showing that it satisfies the hypothesis of
Theorem ().

Solution
For this method,

Q=2 F(x;,w))+ F(xppq,w; + 0 (x;,w))]

If f satisfies a Lipschitz condition on {(x,w) |a <x < band —oo < w < o} Iin
the variable w with constant L, then, since

¢(Z’,W,h) _(p(aW!b)
=1 F(x,w)+ f(x + hw + hf (x,w) —%[f(x,W) +F(x +hw+hf (x,w)]
the Lipschitz condition on f leads to
‘go(t,w,h) —qo(t,v_V,b)‘
- \% F(x,w)+F(x+hw + bt (x,w) —L[F(x,w)+F(x + hw + bt (X,V_V)H
- ‘%‘f(x,w) — £ w)|+1|F(x + hw + b (x.w)—F(x +hw + hf (X,W)H

=lrw-—w +%Lw+bf (x,w)—w + hf (X,I/_V)‘

S |

=L7iw— —|—%LW—I/_V‘-|—%L‘]]1{ (x,w)— hf (X,W)‘

=lr\w-w —i—%LW—;‘—F%]ILZ‘W—V_V)‘

= Llw —w|+ 1w —w) = (+%bL2]}—E)\
Therefore, ¢ satisfies a Lipschitz condition in w on the set
D ={(x,wh)|la <x <band —o< w < 00,0 < h < hgy}.
for any h, > Owith constant L'= L +%I1L2.
Finally, if f is continuous on {(x,w)|a <x < band —oo < w < o}
then ¢ is continuous on
D ={(x,wh)|la <x <band —o< w < 0,0 < h < hy}.

so Theorem (5) implies that the Modified Euler method is stable. Letting h = 0, we
have

o(t,w, 0):%f(X,W)+%f(X+O,W+O f (x,w))=f (x,w),

so the consistency condition expressed in Theorem (5), part (ii), holds. Thus, the
method is convergent. Moreover, we have seen that for this method the local truncation
error is 0 (h?), so the convergence of the Modified Euler method is also 0 (h?).
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Multistep Methods
For multistep methods, the problems involved with consistency, convergence, and
stability are compounded because of the number of approximations involved at each
step. In the one-step methods, the approximation w;,,; depends directly only on the
previous approximation w;, whereas the multistep methods use at least two of the
previous approximations, and the usual methods that are employed involve more.
The general multistep method for approximating the solution to the initial-value
problem

y'=f(xy)a <x < byl =a (28)
has the form
woyg=a,w1=a, .. - Wm_-1 =m—1,

Wit1=am-aWj+am- W1+ +aWit1-m
+hF x;hwi Wi, . Wi, 29
foreachi = m — 1,m,...,N — 1, where a,,_1,a,,_>, ...,dpare constants and, as

usual,h = (b — a)/N and x; =a+ ih. The local truncation error for a multistep
method expressed in this form is

Y(xjp1)—am1y(x;)—..—agy(Xj11_m)
h
—F(X,-,b,,V(Xj+1)’,V(X1’),- : -’y(XH—l—m))a

7,41 (h) =

foreachi = m — 1,m,...,N — 1. As in the one-step methods, the local truncation
error measures how the solution y to the differential equation fails to satisfy the
difference equation.

For the four-step Adams-Bashforth method,

The local truncation error is

25144
720

4
Tiy1= £( )(ul-,y(yl-)) forsome ;€ x; 3,x;11
whereas the three-step Adams-Moulton method has local truncation error is

—194%
tiir = Py () forsome gy € xp x4

provided, of course, that y € C5[a, b].

Throughout the analysis, two assumptions will be made concerning the function F:

o If f=0 (that is, if the differential equation is homogeneous), then F = 0 also.

« F satisfies a Lipschitz condition with respect to{w j} , In the sense that a constant L

exists and,
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for every pair of sequences {v ],}9/:0 and{r j}?/zo
andfori = m — 1,m,...,N — 1, we have

m
| F(xj Vit o Vicdiom) —F(x;,Bviet,. . wVitl—-m)| <L 'Z() Vig1—j — vit1—j 1.
j:
The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of
these conditions, provided f satisfies a Lipschitz condition.
The concept of convergence for multistep methods is the same as that for one-step
methods.
« A multistep method is convergent if the solution to the difference equation
approaches the solution to the differential equation as the step size approaches zero.
This means that

lim Max |\w;—y(x;)| = 0.
h—oo 0</i<N

For consistency, however, a slightly different situation occurs. Again, we want a
multistep method to be consistent provided that the difference equation approaches the
differential equation as the step size approaches zero; that is, the local truncation error
approaches zero at each step as the step size approaches zero. The additional condition
occurs because of the number of starting values required for multistep methods. Since
usually only the first starting value, w0 = «, is exact, we need to require that the errors
in all the starting values {a;} approach zero as the step size approaches zero. So

lim |z;|=0 forall i=mm+ 1,....N (30)

h—0

And lim |a; — y(x;)|=0 forall i =1,2,m—1 (31)
h—0

must be true for a multistep method in the form (5.55) to be consistent. Note that (31)
implies that a multistep method will not be consistent unless the one-step method
generating the starting values is also consistent.

The following theorem for multistep methods is similar to Theorem (5), part (iii), and
gives a relationship between the local truncation error and global error of a multistep
method. It provides the theoretical justification for attempting to control global error
by controlling local truncation error. 8.

Theorem (6):
Suppose the initial-value problem

y'=fmxya<sx< by = a
Is approximated by an explicit Adams predictor-corrector method with an m-step
Adams-Bashforth predictor equation

Wiy =w;+hlby 1f(x;w;)+..+bof (Xjp1—mWit1—m)l;
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With local truncation error 7; ¢ (4), and an (m — 1) —step implicit Adams-Moulton
corrector equation

wii1 =wit+hlbm-1f(x;w; 1) +bm—2f(x;w;)

with local truncation error 7;4+1(A),. In addition, suppose that f(x,y)andfy, (x,y)

are continuous
on D = {(x,y)|a <x< band —o < y < o0}
and thatf),(x, ) is bounded. Then the local truncation error o; (%) of the

predictor-corrector method is

Of (x;11.6;11)
oy ’

Where 6, 1 is a number between zero and A7, 1(4).

Moreover, there exist constantsk,and k., such that

oir1(B)=7i11(h) +7; 11 (M)bm—1

(wi—y(x)| <| Max |w;—y(x)|+kio(h)e 79,
0</<m—1

Where o(h)= Max |0]-(11)|.
<J<N

Before discussing connections between consistency, convergence, and stability for
multistep methods, we need to consider in more detail the difference equation for a
multistep method. In doing so, we will discover the reason for choosing the Adams
methods as our standard multistep methods.

Associated with the difference equation (29) given at the beginning of this discussion,

wo =a,w1=ag, .- - \Wmp-1 =m-1>
Wit1=dm— W, tam-oW; 1+ taWw,i1-m
+AhF XJ"h’Wi+1’Wi’ e Witl—m
is a polynomial, called the characteristic polynomial of the method, given by
P A :/1177 —am_l/lln_l —élm_zﬂm_z —...—312—30. (32)
The stability of a multistep method with respect to round-off error is dictated the by

magnitudes of the zeros of the characteristic polynomial. To see this, consider applying
the standard multistep method (5.55) to the trivial initial-value problem

y' = 0,y(a) = a,wherea # 0. (33)
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This problem has exact solution y(x) = a. We can see that any multistep method
will, in theory, produce the exact solution w,, = «a for all n. The only deviation from
the exact solution is due to the round-off error of the method. The right side of the
differential equation in (33) has f (x,y) = 0, so by assumption (1), we have
F(xj Wi 1, Wii 2, sWig1 1) =0

in the difference equation (29). As a consequence, the standard form of the difference
equation becomes

Wiyl =am Wi +agn Wi 1+..+awi1—m (34

Suppose 4 is one of the zeros of the characteristic polynomial associated with (29).
Then w,, = 4, for each n is a solution to (33) since

ﬂiJrl —am—lﬂi —am—z/‘liil _..._aoﬂiJrlim:/’liJrlim[/Yn _am—lﬂlnil oo —30] =0

In fact, if 4,,4,,...,4,, are distinct zeros of the characteristic polynomial for (29), it
can be shown that every solution to (34) can be expressed in the form
wo= 3 Al (35)

i=1
for some unique collection of constants cq,cy,. . .,c;y.
Since the exact solution to (33) is y(t) = «a, the choice w,=a,, for all n, is a
solution to (34). Using this fact in (34) gives
O=a—aa,, 1—aa,, ,—..—aay=all—a,, 1 —a,_p—..—ag]. This implies
that 4 = 1 is one of the zeros of the characteristic polynomial (32). We will assume that
in the representation (35) this solution is described by 4 =1 and ¢; =«, so
all solutions to (33) are expressed as

m
W,,:a/—l— Z C'I'/ll'n . (36)
=2

If all the calculations were exact, all the constants c;,c3,. . .,c,, would be zero. In
practice, the constants c¢,,cs,. . .,c,,are not zero due to round-off error. In fact, the
round-off error grows exponentially unless |4;| < 1| for each of the roots 4, 4, . ., 4,

. The smaller the magnitude of these roots, the more stable the method with respect to
the growth of round-off error. In deriving (36), we made the simplifying assumption
that the zeros of the characteristic polynomial are distinct. The situation is similar when
multiple zeros occur. For example, if 4 = A1 =...=4, for some k and p, it

simply requires replacing the sum
n n n
Ck A +Ck 11k 41+ +Ck 1 p Ak +p
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In (36) with
cx i + ckﬂnﬂl’z_l +ck+2n(n—1)/lz,_2 +otCpyp n(n—1)..(n—p+1) ﬂz_p (37)

Although the form of the solution is modified, the round-off error

if | 4 |>1 still grows exponentially.

Although we have considered only the special case of approximating initial-value
problems of the form (33), the stability characteristics for this equation determine the
stability for the situation when f(x,y) is not identically zero. This is because the
solution to the homogeneous equation (33) is embedded in the solution to any equation.
The following definitions are motivated by this discussion.

Definition (8)

Let 4,4,..., 4y denote the (not necessarily distinct) roots of the characteristic
equation

PA=X"—a, A1 _a 32 _—al-a,=0

Associated with the multistep difference method

Wop=aW1=a1,.. Wmnm_1=%m-1

Wi =am_ Wi +aqm_Wij_g+ ° * +agVji-m +hF X, hWwWi Wi, . . Wi )

If| 4 |<1,foreachi = 1,2,...,m,and all roots with absolute value 1 are simple roots,
then the difference method is said to satisfy the root condition.

Definition (9)

(i) Methods that satisfy the root condition and have 1 = 1 as the only root of the
characteristic equation with magnitude one are called strongly stable.

(if) Methods that satisfy the root condition and have more than one distinct root with
magnitude one are called weakly stable.

(iii) Methods that do not satisfy the root condition are called unstable.

Consistency and convergence of a multistep method are closely related to the round-
off stability of the method. The next theorem details these connections. For the proof
of this result and the theory on which it is based.

Theorem (7)

A multistep method of the form

Wop=aW1=a,.. Wmnm_1=%m-1

Wi =am-Wi +aq_pWi_g+ * * +aWim +hF X, hWwi Wi, . Wi m).
is stable if and only if it satisfies the root condition. Moreover, if the difference method
Is consistent with the differential equation, then the method is stable if and only if it is
convergent
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Example 15
The fourth-order Adams-Bashforth method can be expressed as

Wit =Wj +hF(Xj,hwi Wi, .. W;j_3),
where
FXi,hwi g Wi,.. .Wj_3)

= JLI55f (xj Wi )—59F (Xj_1Wi_1)+37F (X oW _p)—9f (Xj_gwi_3)l;
Show that this method is strongly stable.

Solution
In this case we have m = 4, ayg=0,ay=0,ap =0 , andag =1, so the characteristic

equation for this Adams-Bashforth method is
0=P(1)= A%~ 23=23(1-1). This polynomial has roots A4 =12=0,13=0, and
A4 =0 . Hence it satisfies the root condition and is strongly stable.

The Adams-Moulton method has a similar characteristic polynomial, with zeros
M =L1 =0, and A3=0, and is also strongly stable.

Example 16
Show that the fourth-order Milne’s method, the explicit multistep method given by

Wi g =wi_g+ 42 (xj wi)—F (i _gwi_1)+2f (Xi_pWi_p)]

Satisfies the root condition, but it is only weakly stable.

Solution
The characteristic equation for this method, 0=P (/1):/14 —1, has four roots with
magnitude one: 4 =11, =-1/43=i, and 44 =—i . Because all the roots have

magnitude 1, the method satisfies the root condition. However, there are multiple roots
with magnitude 1, so the method is only weakly stable.

Example 17

Apply the strongly stable fourth-order Adams-Bashforth method and the weakly stable
Milne’s method with h = 0.1 to the initial-value problem

y'=—6y +6, 0<x <1, y(0)=2, which has the exact solution Yy (x):1+e_6x :
Solution

The results in Table (11) show the effects of a weakly stable method versus a strongly
stable method for this problem.
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X Exact Adams- Error Milne’s Error
ey B Vi Wi Method W |Yj —W;
Method W

0.1 1.5488116

0.2 1.3011942

0.3 1.1652989

0.4 1.0907180 1.0996236 8.906 x 10-3  1.09837/85  7.661 x 103
0.5 1.0497871 1.0513350 1.548x10-3 1.0417344 8.053 x 10-3
0.6 1.0273237 1.0425614 1.524 x10-2 1.0486438 2.132 x 10-2
0.7 1.0149956 1.0047990 1.020x10-2 0.9634506 5.154 x 10-2
0.8 1.0082297 1.0359090 2.768 x10-2 1.1289977 1.208 x 10—-1
0.9 1.0045166 0.9657/936 3.872x10-2 0.7282684  2.762x10-1
1.0 1.0024788 1.0709304 6.845x10-2 1.6450917 6.426 x 10-1

Table (11)

The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order
predictor-corrector technique over the Milne-Simpson method of the same order is that
both the Adams-Bashforth and Adams-Moulton methods are strongly stable.
They are more likely to give accurate approximations to a wider class of problems than
is the predictor-corrector based on the Milne and Simpson techniques, both of which
are weakly stable.

EXERCISE (6)

1)

(@) Showthat y'(x;)=

2h

some &, wherex; < & <Xj.o -

(b)

Part (a) suggests the difference method

3

y"é

Consider the differential equation y' = f (x,y),a < x < b,y(a) = «a.

“3y () + 4y (5i41) — y(xiva) | B

for

Wi+2:4Wi+1—3’Vi —2hf (Xi ,Wi), fori =0, 1...,N —2. Use this method
tosolvey'=1-y, 0<x <1, y(0)=0,with h=0.1. Use the starting value

wgo=0andwqi=Yy(Xxq)=1-e

(©)
(d)

(2)

Repeat part (b) withh =0.01andwq =Yy (X7) —1-¢70

-0.1

01

Analyze this method for consistency, stability, and convergence.

— =Bw. ,
Wip= 5Wi+Wj_g—

Given the multistep method
lwi_p+3hf (xjwi), fori=2.. N -1

2

with starting valuesw g,wq,w 5 :

(a) Find the local truncation error.
(b) Comment on consistency, stability, and convergence.
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(3) Investigate stability for the difference method
Wi =—aW;i +5nj_g+2h[f (xj w;i)+2hf (x;_1.w;_1)],

fori =1 2,...,N —1 with starting values w o,w ;.

Multistep Methods

In previous sections we have discussed numerical procedures for approximating the
solution of the initial value problem

y'=f(x,y)yto)=VYo @

in which data at the point x =x,, are used to calculate an approximate value of the
solution y (X ,,4) at the next mesh point x =X, . In other words, the calculated

value of y at any mesh point depends only on the data at the preceding mesh point.
Such methods are called one-step methods. However, once approximate values of
the solution y (x ,) have been obtained at a few points beyond X, it is natural to ask
whether we can make use of some of this information, rather than just the value at
the last point, x , calculate the value of y at the next point. Specifically, if

y, atXqy,y, at Xo,. ..,y , at X, are known, how can we use this information to
determine y ., at X, ,? Methods that use information at more than the last mesh

point are referred to as multistep methods. In this section we will describe two types
of multistep methods:

Adams methods and backward differentiation formulas. Within each type, we can
achieve various levels of accuracy, depending on the number of preceding data points
that are used. For simplicity, we will assume throughout our discussion that the step
size h is constant.

Adams Methods.
Integrate (1) in the interval [x, ,xp 1] we have

Xn41
Yni1—Yn= fﬁ f (Xn,Yn)dx

Xn

Xn+1
Ynia=Yn—+ [ f(Xn,yn)dx (2)

Xn

Where vy, is the approximate solution of the initial value problem (1) at the point
X, . The basic idea of an Adams method is to approximate f (x,,y,)bya
polynomial P, (x) of degree m and to use the polynomial to evaluate the integral on
the right side of equation (2).
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Explicit schemes
Two-step Adams-Bashforth method
We derive the two-step Adams-Bashforth method,
Yn+1 = Yn + R[bif (X, Yn) + bof (tn_1,Yn-1))
The constants b, and b,, are obtained by evaluating the integral from x,, to x,,,; of a
polynomial P, (x) that passes through f (x,,, v,,) andf (x,—1, Yn—1)
Because we can write

f"(An,y (4
Py ) =F (oY n)lo +F 1. Db+ 220D by
Where
E _ U,y n)) (X—Xp)(X—Xp,_1) is the truncation error and

2!
LOZ (X_Xn—l) Ll: (X_Xn)
(Xn_xn—l)’ (Xn_1—Xn)

Is the Lagrange polynomials for the interpolation points x,, andx,,_,, and because
our final method expresses y,, ., as a linear combination of y, and values of f, it
follows that the constants b, and b,, are the integrals of the Lagrange polynomials
from x,, to x,,,; divided by h.

So equation (2) becomes

Xn+1 (X —X ) (X—X )

Yni1="Yn+ f (Xn.Yn) =L 1 f Xn_1,Yn_1) n/_|\gx
" " x{ o (Xn —Xp-1) " " (Xn_1—Xn)

Xn1 X — X Xn41 X — X
Ynyr1=Yn+f Xn,¥n) f ( n-1) dx +f (Xp_1,Yn-1) f ( n) dx

Xp (Xn —Xn-1 X (Xn_1—Xn)

Put

X =Xp +sh

then x —x,, =sh and dx =hds

X =Xp1=(X—Xp)+Xn=xpg)=sh+h=nh(s +1)

Voir=Yn 0 0noym) [ a5 vt o yna) [ s
Xn Xn

1 1
Ynt1=Yn +hf (Xn’Yn)f (s +1ds — hf (Xn—la)’n—l)f sds
0 0
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6 417 21
s +
ds —f (xp_1, yn—1)—

Ynsr=Yn +h|f Xn,¥n)
0

Yns1=Yn +0[3f (0,yn) =3 (<n_1,yn1)]

We conclude that the two-step Adams-Bashforth method is

Ynt1=VYn +%3f XnsYn)—F Xn_1,Yn-1) 3
Finally we determine the local error by the equation

f "G,y () KA
E,= (n J’( n)) f

(X —Xp)(X —Xpn_1)

) 3
_f (znz,!y(zn» [ 13636 +2)d =221 g ()

If we use trapezoidal integral by using the points (Xp, ,Y),(Xn11,Y na1)Which in
fact  interpolation  polynomial interpolate  the  function f (x,,y)at
(Xn+Yn) (Xn11,Ynr1)equation (2) becomes

Yn1=Yn +3[f ®n.¥n)+f Xni1.Ynia)] (4)

Predictor-corrector scheme

When an explicit scheme is combined with an implicit scheme in this manner, we have
the so called predictor-corrector scheme. The equation (3) is predictor calculation to
equation (4)

P
Ynt1 =VYn +% 3f Xn,Yn)—f Xn_1.Yn_1) (5)

P
Ynit =VYn "‘nf(xn’yn)‘f‘f Xnit Yna1 ) (6)
2

Three-step Adams-Bashforth method
We derive the three-step Adams-Bashforth method,
Yn+1 = Yn + A[b1if Oy ) + bof (Xn_1,Yn—1) + bsf (Xn_2, Yn—2)):
The constants b,, b,and b5, are obtained by evaluating the integral from x,,to x,,, ; of

a polynomial P, (x) that passes through f(x,, V), f (Xn—1, Yn—-1) andf (x,—_2, Yn—2).
Because we can write
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Po(Xn,Yn)=F Xn,yn)lo+f Xn_1,Yn_)Ll1+F (Xn_2,¥n_2)L>

4 M(X_ Xp)(X—=Xp_1)(X—=Xp_2)
3rh

Where
0= (X =Xp_1)(X —Xp_2)
(Xn —Xp_D)Xp —Xp_2)

L= (X —Xp)(X —Xp_2)
(Xn1—Xp)Xn_1—Xn_2)

_ (X —Xp)(X =Xp_1)
(Xpn—2 —Xn)Xp_2 —Xp_1)

iIs the Lagrange polynomials for the interpolation points x,, x,_; andx,_,, and
because our final method expresses y,,.; as a linear combination of y, and values of
f, it follows that the constants b,,b,and b, are the integrals of the Lagrange
polynomials fromx,, to x,,,, divided by h.

Equation (2) becomes

Xn1 (X —=Xn_1)(X —=Xn_2)
Yni1=Yn+ f(Xn,¥Yn) n— n—27 gy
nr " an nan (Xn —Xp_1)(Xp —Xn_2)
Xni1 (X —=Xp)(X =Xn_»)
+ f(Xn—1.¥Yn-1) . =22 _dx
an ! " (X1 X)X 1 —Xp_2)
Xni1 (X —=Xn)(X —=Xn_1)
+ J f(Xn_2,Yn-2) : =L —dx
xj;] " " (X2 = Xn)(Xn_2 —Xn_1)
Put
X =Xp +sh

then X —x, =sh and dx = hds
X —Xp1=X—Xp)+Xn—Xp_g)=sh+h=h(s +1)
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X —Xp_2=X—=Xp)+Xq—Xp_2)=sh+2h=h(s +2)

(s+1)(s+2)
Yni1=Yn +hf Xn.¥n)
n—+1 n n n{ (1)(2)

)+ —|—1)

o hf (X 1Yno1 f Mds—{—hf (Xn 2:Yn—2 )f ( 2)( 1)

L (DY)

We conclude that the three-step Adams-Bashforth method is

YnHy1="Yn ‘|’1h_2 23f (X, Yn)—16f (Xn_1,Yn—1) +5f Xn_2,¥Yn-2) (6)

Finally wee determine the local error by the equation

Xk 11
% f (X=Xp)(X=Xp_1)(X=Xp_2)

Xk

E,=

3!
If we use Simpson integral by integrate the equation (1) on the interval

1
_1 (}‘n’y(’ln))f h*(s)(s +1)(s+ 2)ds Zgh4f ® iy (i)
0

[Xn—l’xn+1] which in fact interpolation polynomial interpolate the function

f (Xn,Yn)at three points(x,,_1,Yn_1)(Xn,Yn)and (Xn11,Yno1)equation (2)
becomes

Yn+1=Yn-1t7 [f (Xn—1:Yn-1)+2f X yn)+F Xpa, yn—|—1)] (7)

Adams-Moulton (AM) Methods

The same approach can be used to derive an implicit Adams method, which is known
as an Adams-Moulton method. The only difference is that because x,,; IS an
interpolation point. Because the resulting interpolating polynomial is of degree one
greater than in the explicit case, the error in an m — step Adams-Moulton method is
O(h™*1), as opposed to O(h™) for an m — step Adams-Bashforth method AM

methods are implicit methods; in other words, they use information at X,;1 to compute

Yn+1 - Let us derive AM2, the second-order Adams-Moulton method.
Again, like the AB method, we will use the Lagrange interpolating polynomial of
degree 1, as a linear interpolation. However, instead of fitting the interpolant to fat X

and X1, we will fitto fat X, and X,41. Proceeding as for the AB2 case, we have
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)L _|_f "(/lnaJ’(/ln))(X X

PrXn,Yn)=Ff Xni1,Yny)lo +f (Xpn,Yn ol n)X—Xn11)
Where
E = f "Un.y (n)) (X—Xp )(X—X 1) is the truncation error and

21

LO: (X_Xn) L]_: (X_Xn+1)

(Xp41—Xn) (Xn —Xp42)
interpolation points x,, andx,, 1,

Is the Lagrange polynomials for the

Xn41 (X _x )
Yny1=Yn+ f f(Xn—HI_ yn+1)( X I’)l())_|_f (Xn’Yn)(X Xn—|-11) dx
Xn n+ - n —An+
Xni1 Xntl  (x —x
Yny1=Yn +1 Xni1.¥ni1) f (X =Xn) dx +f (Xn,Yn) f ( n+1) dx
x, (Xn41—Xn) v (Xn—Xn1)
Put
X =Xp +sh

then x —x,, =sh and dx = hds

X —Xpi1 =X —=Xp)+Xn—Xp11)=sh—h=h(s -1)

Xn-1 h(s Xn1 s —1Dh
yn_|_1:yn +hf (Xn_l_l,yn_|_1) f %dS‘i‘hf (Xn,yn) f (_h) dS

Xn

1 1
Yn41=Yn +hf (Xn+1’yn+1)f sds —hf (xp,yn)[ (1—s)ds
0

a-s?)
2

Ynt1=Yn th|f Xni1s Yn+1)( ) ds —f (xn,yn)

Yn+1=VYn ‘|‘h_%f (Xn—f-l’yn—f-l)_'_%f (Xn’Yn)]

We conclude that the one-step Adams-Moulton method is

Ynt1=Yn t+5 [f (Xn41:Yn4) +f (Xn,Yn)] 3)
We determine the local error by the equation
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" Xk 41
£ =) ) —x)

Xk

3

" 1
_f (Anz"y Gn)) 1 13s)(s — 1yas :%f "Gy (n)) » xn <Zn <Xt
: 0

If we use trapezoidal integral by using the points (X, ,yp),(Xn 11, Y na1) Which in

fact interpolation  polynomial interpolate the function f (X,,Yp)at
(Xn+¥Yn) (Xn11,.Yno1)equation (2) becomes

Y41 =Yn +5[f %n¥n)+F KngYni)] (4)

Notice that the order 2 AM method only requires the use of one previous step for the
same 0(h3) LTE; again, the global error is 0 (h?). In general the s order AM method
requires s-1 steps, despite using the same polynomial degree as an s order AB

method. This is the benefit of going implicit. Of course, we now have a linear system

to solve if we want to compute Y1

AM3
To derive Adam-Moulton Consider approximating the function f (X;,,Yp). in

equation (2) by the following second degree Lagrange polynomial from equation (1),
whenm = 2

Po(Xn,¥Yn)=F Xnis,Yns)lo +F Xyl +f (Xn_1, Y n—1)Lo

f"(Xp,
+ %(X— X n—I—l)(X_ Xn )(X—X n —1)

Where

(X _Xn)(x _Xn—l) L, — (X _Xn—i—l)(x _Xn—l) and

- ' 1 '
(Xn41=Xn)Xn41—Xp-1) (Xn —Xn4)(Xn1—Xp_1)

(X —Xp )X —Xp)

Lo =
(Xn—1—Xn+D)(Xn_1—Xp)

Is the Lagrange polynomials for the interpolation points x,,_; , x,, andx,,,,then
equation (2) becomes
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Xnt1 ) (x X
Ynaa=Yn+ | f(Xnin¥Yni) ( n)( n—1)

dx
X Xnp1—Xn)Xnp1—Xn-1)

Xn+1 X —X X —Xp_
Tt Oy ) a0 Xn) g,
X (Xn —Xpa1)(Xpn —Xp_1)

X B )
T fﬂf(xn—l’Yn—l) (X —Xp4)(X —Xp)

dx
X (Xn1=Xpy)Xp_1—Xp)

Put

X =Xy +sh

then x —x, =sh and dx =hds

X —Xp1=X—Xp)+Xn—Xp_1)=sh+h=h(s +1)

X —=Xpi1=X —=Xp)+Xp—Xpp1) =sh—h=h(s -1)

(s)(s +1)
Yna1=VYn +hf (x Ynat) | ————=ds
n+1 n n+1lYn+1 \g (1)(2)

1
(s —1(s +1)
+hf (Xn,¥Yn) ds
" { (-)@)

(1.9 1)f o

We conclude that the Two Step Adams-Moulton method is

Yni1=Yn T 15050 %ni1.Yns0) +8 XnYn)—F Xn1yn2)]|  (6)
We determine the local error by the equation

Xk +1
£o=tndn) I 0 0

"y @
3!

Xji—1 <Hji <Xj41

1 _h4
) T (s —1)(s)(s + s =2—h4f O iy i)
0
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If we use Simpson integral by integrate the equation (1) on the interval [x n—1 X n+1]

which in fact interpolation polynomial interpolate the function f (X,Y)at three
poiNnts (X1, Y n—1),Xn,Yn)and (Xn11,Y 1) equation (2) becomes

Yn-|—1ZYn—1‘|‘%[f (Xn_1,Yn-1)+2f (Xn,yp) +f (Xn-|—1’Yn-|-1)] (7)

Based on the general form of an AB method, we can now also write the general
form of an AM method. We only need to adjust the indices so they go up to

Xn41 on the interpolating polynomial
s—1

Ynt1=VYn +thO Brf (Xni1—k»Ynt1—k)

1Xi+l
Where B =4 J Ly (x)dx

X

Example 11
Consider the initial-value problem
y =y —-x*+10<x<2  y(0) =05
Use the exact values given from y(x) = (x + 1)? — 0.5e¢* as starting valuesand h
= 0.2 to compare the approximations from
(c) By the explicit Adams-Bashforth four-step method and
(d) The implicit Adams-Moulton three-step method.

Backward Differentiation Formulas.
Another type of multistep method uses a polynomial

P (X) to approximate the solution Y (X ) ) of the initial value problem (1) rather than
its derivative Y '(Xp,), as in the Adams methods. We then differentiate P, (X)and set
Pm (Xn11)) equal f (X11,Y 1) to obtain an implicit formula for Y, 1. These are
called backward differentiation formulas.

The simplest case uses a first degree polynomial Py(X) =AX +B . The coefficients are
chosen to match the computed values of the solution Y, and Y41. Thus A and B
must satisfy

Pi(Xn)=AxXxn +B =y,

(8)
PiXn11)=AXni1+B=Yny

Since P'(x)=A, the requirement that P;'(Xp11) =F (Xp1, Y1) is just
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A=f (Xpni1¥nt)
Another expression for A comes from subtracting the first of Equation. (8) from the
A— (Ynt1—Yn) .

h
we obtain the first order backward differentiation formula

Yni1=Yn +hf (Xni1,Y 1) 9)

Note that Eq. (9) is just the backward Euler formula .

By using higher order polynomials and correspondingly more data points, we can
obtain backward differentiation formulas of any order. The second order formula is
Or use the three step backward difference formula

second, which gives

\ 3y —4yn +Yn_
Y(Xn+1)= n+1 2hn n—1

3yn—f—1_42)rl]n +Yn—1 —f (Xn-l—l’yn-i—l)

Substitute in the initial value problem (1) then

Arrange the terms we have

Yn1=3 4Yn—Yn1+2hf (Xn10,Yn41)

and the fourth order formula is
Ynt1=125[48y —36y_1 +16y,_o =3y, _3+12hf (X110, Y nse)]

These formulas have local truncation errors proportional to h® and h®, respectively.

A comparison between one-step and multistep methods must take several factors
into consideration. The fourth order Runge—Kutta method requires four evaluations of
f at each step, while the fourth order Adams—Bashforth method (once past the starting
values) requires only one, and the predictor—corrector method only two.

Thus, for a given step size h, the latter two methods may well be considerably faster
than Runge—Kutta. However, if Runge—Kutta is more accurate and therefore can use
fewer steps, then the difference in speed will be reduced and perhaps eliminated.

The Adams—Moulton and backward differentiation formulas also require that the
difficulty in solving the implicit equation at each step be taken into account. All
multistep methods have the possible disadvantage that errors in earlier steps can feed
back into later calculations with unfavorable consequences. On the other hand, the
underlying polynomial approximations in multistep methods make it easy to
approximate the solution at points between the mesh points, should this be desirable.
Multistep methods have become popular largely because it is relatively easy to estimate
the error at each step and to adjust the order or the step size to control it.

Summary

1. An order s AB method combines f values in [X;41-s, Xp] to update Y, ;

2. An order s AM method combines f values in [Xp49_g, Xp41]to solve for
| Pageb7



Yn+l
3. An order s BDF method combines y values in[X11—s, Xn41], evaluates f

at X 41 alone, and solves for Y p41.

our general formula will encompass all the methods in this document, but will
account for possibly new multistep methods as well. Here it is:

s s
> % Yniik = 2 Bkfnitk

We can see how to recover AB, AM and BDF methods from this formula:
1. For AB methods, o =0; kK > 1land By=0

2. For AM methods, o =0; K > 1 but Bg#0

3. For BDF methods, o =0; k > 0.

We derived several multistep methods using integrals and derivatives of polynomial
interpolants, and presented a general formula that covered all the cases discussed in
this document. Using the polynomial framework, we were also able to derive
estimates for local truncation errors (LTES) for all these methods. We remarked on
global truncation errors for every method.

However, we never discussed the stability of these methods, beyond pointing out that
implicit methods may be more stable than explicit ones.

PROBLEMS
In each of Problems 1 through 6 determine an approximate value of the solution at
x =0.4 and x =0.5 using the specified method. For starting values use the values

given by the Runge—Kutta method; Compare the results of the various methods with
each other and with the actual solution (if available).

(@) Use the fourth order predictor—corrector method with h = 0.1. Use the corrector
formula once at each step.

(b) Use the fourth order Adams—Moulton method with h = 0.1.

(c) Use the fourth order backward differentiation method with h = 0.1.

Dy =3+x-y y(0) =1
2) y' = 5x— 3\/y, y(0) = 2
@) ¥y =2y — 3x, y(0) =1
4) y'= 2x + ye™*, y(0) = 1

B)y' = y? + 2xy® + x?, y(0) = 0.5

6)y = (x*—y?siny,  y(0) = -1

(7) Show that the first order Adams—Bashforth method is the Euler method and that
the first order Adams—Moulton method is the backward Euler method.

(8) Show that the third order Adams—Bashforth formula is

(9) Show that the third order Adams—Moulton formula is
Ynt1=Yn "‘1h_2(5fn+l+8fn —fho)
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(10) Derive the second order backward differentiation formula

MULTISTEP METHODS (Tayler Expansion Technique)

Multistep methods make use of information about the solution and its derivative at
more than one point in order to extrapolate to the next point. One specific class of
multistep methods is based on the principle of numerical integration. If the differential
equation y' = f(x,y) is integrated from x; to x;,,; we obtain

Xit+1

YViv1 = Yi + f(x,y(x))dx €]

Xi
To carry out the integration in (1), approximate f(x,y(x)) by a polynomial that
interpolates f'(x, y(x))atk points x; , x;_; ....X;_;+1. Ifthe Newton backward formula
of degree k-1 is used to interpolate f (x, y(x)), then the Adams-Bashforth formulas are
generated and are of the form

k
Yin = Vith ) by e
j=1

where
y’i = f(xi; Y(xl))
This is called a k-step formula because it uses information from the previous k steps.
Note that the Euler formula is a one-step formula (k = 1) with b; = 1.
Alternatively, if one begins with (1), the coefficients b; can be chosen by assuming that

the past values of y are exact and equating like powers of h in the expansion of (2) and
of the local solution y;,; about x;. In the case of a three-step formula

Yisr = Yi+h[by', + by’ + b3y, ]

Expand y’,_,,and y’,_,about x; gives

! h3
Yirr = Yi + hy';(by + by+b3) — h?y ’i(bz + 2bs) + yy"'i(bz +4b3) + -

Where

2 3
y/i_l — y,(xi _ h) — yri _ hyrli +Zy”,i _ayruli +
I R A ! 4h2 " 8h3 "
yi_z_y(xi_Zh)_yi_Zhyi-l_Ty i_?y i+'”

Multistep Methods
The Taylor's series expansion of y;, ; is

h? h3

Vi =Y i +h) =y +hy'i + Ey”i + ay”,i +o
and upon equating like power of h, we have
b, + b, + b;=1

1
bz + 2b3 —_— _E
b, +2b; = 1

2 3 3
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The solution of this set of linear equations is b, = % , b, = _1—126and by = %

Therefore, the three-step Adams-Bashforth formula is

h

Yier = Vit 5 [23y' - 16y —5y", ] (3)
A difficulty with multistep methods is that they are not self-starting. In (3) values fory;
y',y',_,andy’, _ are needed to compute y;,, The traditional technique for computing
starting values has been to use Runge-Kutta formulas of the same accuracy since they
only requirey, to get started. An alternative procedure, which turns out to be more
efficient, is to use a sequence of s-step formulas with
s = 1,2,...,k . The computation is started with the one-step formulas in order to
provide starting values for the two-step formula and so on. Also, the problem of getting
started arises whenever the step-size h is changed. This problem is overcome by using
a k-step formula whose coefficients depend upon the past step-size h. This kind of
procedure is currently used in commercial multistep routines.
The previous multistep methods can be derived using polynomials that interpolated at
the point x; and at points backward from x; these are sometimes known as formulas of
explicit type. Formulas of implicit type can also be derived by basing the interpolating
polynomial on the point x;.,as well as on x; and points backward from x; The simplest
formula of this type is obtained if the integral is approximated by the trapezoidal
formula. This leads to

Yit1 = Vit g [f (e yi) + f (Xig1s Yigd)] (4)
If f is nonlinear, y;,; cannot be solved for directly. However,
we can attempt to obtain y; ., by means of iteration. Predict a first approximation
y°i+1 to y;,1 by using the Euler method

Yirr = Vi +hf(x,y:) (5)
Then compute a corrected value with the trapezoidal formula

h
Yirr = Vi t5 [f (i y) + f(xign, yi + Af (30 )] (6)
Which is called Modified Euler Method
For most problems occurring in practice, convergence generally occurs within one or

two iterations. Equations (5) and (6) used as outlined above define the simplest
predictor-corrector method.

Consistency and Convergence
We have learned that the numerical solution obtained from Euler's method,

Yn+1 = Yn t hf(xn»_yr_l)_; Xpn =Xg + nh;
converges to the exact solution y(x) of the initial value problem

Yo = hf(x,y); y(x0) = yosash - 0.
We now analyze the convergence of a general one-step method of the form
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Yns1 = Yn + hO(x,, y,, h); for some continuous function®(x,,, y,, h). We define

the local truncation error of this one-step method

by

To(h) = 22— 6(x,, y,, h):

That is, the local truncation error is the result of substituting the exact solution into

the approximation of the ODE by the numerical method.

Ash - O0andn — 1,insuchawaythatx, + nh = x € [x,; T], we obtain
To(h) » ¥ — @(x, y(x), 0):

We therefore say that the one-step method is consistent if

B(x,y(x),0) = f(x,¥):

A consistent one-step method is one that converges to the ODE as h — 0.

We then say that a one-step method is stable if@(x,,, y,,, h)is Lipschitz continuous in

y. That is,

|0(x,u,h) — O(x,v,h)| < Lglu— v|; x € [x,,T],u,v € R; h € [0,hy];

for some constant Ly

We now show that a consistent and stable one-step method is consistent. Using the

same approach and notation as in the convergence proof of Euler's method, and the

fact that the method is stable, we obtain the following bound for the global error

€n = Y(xn) — Yn
elo(T—x0) — 1
<
len| < < Iy ) nax [T (R
Because the method is consistent, we have

g, 03, V(] = 0

It follows thatas h - 0 andn — 1 insuchaway that x, + nh = x, we have
lim|e,| = 0;
n—oo

and therefore the method is convergent.

In the case of Euler's method, we have

h
BCey,h) = fCoy); Ta(h) =5 f"(W); e (%o, T):
Therefore, there exists a constant K such that
|T,,(h)| < Kh; 0 < h < hy;
for some sufficiently small h,. We say that Euler's method is first-order accurate.
More generally, we say that a one-step method has order of accuracy p if, for any
sufficiently smooth solution y(x),there exists constants K and h, such that
|T,(h)| < KhP; 0 < h < hy:
We now consider an example of a higher-order accurate method.

An Implicit One-Step Method

Suppose that we approximate the equation
Xn+1
Yome) = y0) + [ V() ds
X

n
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by applying the Trapezoidal Rule to the integral. This yields a one-step method

h
Yn+1 = Yn T E[f(xn' yn) + f(Xn+1 Yn+1)]

known as the trapezoidal method. It follows from the error in the Trapezoidal Rule
that

Yn+1 = Yn

T.(h) = A

1 1 B2y
- E [f(xm yn) + f(xn+1' yn+1)] - _E y (Tn)

Tn € (Xn, Xpt1)

Therefore, the trapezoidal method is second-order accurate.
To show convergence, we must establish stability by finding a suitable Lipschitz
constant Ly for the function

1
D(x,y,h) = E [f(xni Yn) + f(xn+1r yn+1)]

assuming that L¢is a Lipschitz constant for f(x,y) in y. We have
|0Cx,u, h) — O(x,v,h)|

1
= Elf(x,u,h) + f(x+ hu, @(x,u,h) — f(x,v,h) — f(x + h,v,0(x,v,h)|
h

Therefore

h
and therefore

L
7
<
L®_1 h,
by,

provided that gLf < 1. We conclude that for h sufficiently small, the trapezoidal

method is stable,and therefore convergent, with 0 (h?) global error.

The trapezoidal method consist with Euler's method because it is an implicit method,
due to the evaluation of f(x, y) at y,,,,. It follows that it is generally necessary to solve
a nonlinear equation to obtain y,,,,; from y,. This additional computational effort is
offset by the fact that implicit methods are generally more stable than explicit methods
such as Euler's method. Another example of an implicit method is backward Euler's
method

h
Yn+1 = Yn T+ E[f(xn+1: yn+1)]
Like Euler's method, backward Euler's method is first-order accurate.
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Boundary-Value Problems for Ordinary Differential Equations

In this chapter we show how to approximate the solution to boundary-value problems,
differential equations with conditions imposed at different points. For first-order
differential equations, only one condition is specified, so there is no distinction between
initial-value and boundary-value problems. We will be considering second-order
equations with two boundary values.

Physical problems that are position-dependent rather than time-dependent are often
described in terms of differential equations with conditions imposed at more than one
point. The two-point boundary-value problems in this chapter involve a second-order
differential equation of the form

y'= f(x,yy"), fora < x < b, (D)
together with the boundary conditions
y(a) = a and y(b) = B. (2)

The Linear Shooting Method
The following theorem gives general conditions that ensure the solution to a second-
order boundary value problem exists and is unique.
Theorem 1
Suppose the function f in the boundary-value problem
y'= f(x,y,y),fora < x < b,withy(a) = aandy(b) = B,
IS continuous on the set
D ={(x,y,y)|fora < x < b,with —o0 < y < coand —o < y' < o},
and that the partial derivatives f,, and f,, are also continuous on D. If
() fy, (x,y,y") > 0O, forall (x,y,y’) € D, and
(i) a constant M exists, with
I, (. v, ¥)| < M, forall (x,y,y") € D,
then the boundary-value problem has a unique solution.

Example 1
Use Theorem (1) to show that the boundary-value problem
y'+ e +siny' = 0,forl < x < 2,withy(1) = y(2) = 0,
has a unique solution.
Solution
We have
f(,y,y) =e™ +siny'.
and for all xin [1, 2],
Ly, y) = xe™ > Oand|fyr(x,y,y’)| =|—-cosy'| < 1.
So the problem has a unique solution.

Linear Boundary-Value Problems
The differential equation

V'=fxyy)
iIs linear when functions p(x), q(x), and r(x) exist with
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[,y y) = p()y + q(x)y + r(x).

Problems of this type frequently occur, and in this situation, Theorem (1) can be
simplified

Corollary 11.2

Suppose the linear boundary-value problem

y'=px)y +qx)y + r(x),fora < x < b, withy(a)
Satisfies

(1) p(x), g(x), and r(x) are continuous on [a, b],

(i) g(x) > 0on|[a,b].

Then the boundary-value problem has a unique solution.

To approximate the unique solution to this linear problem, we first consider the initial
value problems

y'=p)y +qx)y+ r(x),fora < x < b,

aandy(b) = B,

with  y(a) = a,and y'(a) = 0, (3)
and

y'=px)y +qx)y + r(x),fora < x < b,

with  y(a) =0,and y'(a) =1, (4)

Both problems have a unique solution.

Let y, (x) denote the solution to (3), and let y, (x) denote the solution to (4).
Assume that y,(x) # 0.

Define

B — yi(b)
y() = 7100 + 5=y (). (5)

2

Then y(x) is the solution to the linear boundary problem (3). To see this, first note that
y' () = yi() + 20y () (6)
and
y' () = yi'(0) + 28y () ™)
Substituting for y;' (x) (x) and y5' (x) in this equation gives

o ’ B — y1(b)
y' = p)y(x) + gx)y:(x) + r(x) + y2(b)

— y,(b
=mmGﬁ@+£—ii3ﬁuﬁ

(p()yz(x) + q(x)y>)

y2(b)

+¢w@um+£§ﬁ§@nuﬂ+ru>

=px)y'(x) + q(x)y(x) + r(x).

B — y1(b) _ B — y:1(b) .
Yoy 2 T TG

Moreover,

y(@) = yi(a) + 0 =
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and
p — yi1(b)

y(b) = y,(b) + 7, 0)

Linear Shooting

y2(b) =y;(b)+ B — y1(b) = B

The Shooting method for linear equations is based on the replacement of the linear
boundary value problem by the two initial-value problems (3) and (4). Numerous
methods are available from Chapter 5 for approximating the solutionsy, (x) and y, (x),
and once these approximations are available, the solution to the boundary-value
problem is approximated using Eq. (5). Graphically, the method has the appearance

shown in Figure 1.

g—wb)
yz(®)

yix) =y + Valx)

o+

1
=¥

Fig.1

Example 2

Apply the Linear Shooting technique with N = 10 to the boundary-value problem

sin(ln x)

2 2
YVi==—=y +5y+—03;
and compare the results to those of the exact solution

sin(lnx) — —cos(In x),

Yy =arxtiz 10

Where

10

1
c; = =—=[8 — 12sin(In2) — 4 cos(ln2)] = —0.03920701320

70
and
11
¢ = 15— ¢ ~ 11392070132
Solution
124 2 ! 2 . 2
y'i =7 +x_2y1 + sin(lnx) x~,
forl < x < 2, with y;(1) = landy’;(1) = 0
and

" 2 I 2
y 2= _;yz_l_FyZ'

,for1l < x < 2,withy,(1) = 0andy',(1) = 1.

yfor1 <x <2,withy(1l)=1and y(2) = 2,
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The results of the calculations, with N =10and h =0.1, are
given in Table 1. The value listed as wu,; approximates y;(x;), the value
v, ;approximates y, (x;),, and w; approximates

, ) B — yi(b)

Y (x) = yi(x) + ——=—y3(xx)

2(b)

Xp U =y () vy Ry () wp = y(xg) y(x;) ly(x;) — wy]
1.0 1.00000000 0.00000000 1.00000000 1.00000000
1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43 x 1077
1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34 x 1077
1.3 1.06674375 0.23608704 1.28338227 1.28338236 0.78 x 10°8
1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 x 10°8
1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 x 10°8
1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 x 108
1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43 x 10710
1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05 x 1079
1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41 x 107°
2.0 1.46472815 0.58332538 2.00000000 2.00000000

Table (12)

The accurate results in this example are due to the fact that the fourth-order Runge-
Kutta method gives O(h*) approximations to the solutions of the initial-value
problems. Unfortunately, because of round off errors, there can be problems hidden in
this technique

EXERCISE SET 1
1. The boundary-value problem
Y'=4@ - x,0<x < 1Ly0) =0,y(1) = 2
has the solution y(x) = e?(e* —1) —1(e** —e ?*) +x. Use the Linear
Shooting method to approximate the solution, and compare the results to the actual
solution.
a.Withh=05;
b. With h =0.25.
2. The boundary-value problem
A

T
y'=y" 4+ 2y + cosx,0< x Si,y(O) = —0.3,y(2) = —0.1

has the solution y(x) = — 110 (sinx + 3 cos x). Use the Linear Shooting
method to approximate the solution, and compare the results to the actual solution.
a.Withh = (n/4);
b. Withh = (1/8).

3. Use the Linear Shooting method to approximate the solution to the following
boundary-value problems.
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a.y'=-=-3y"+2y+2x + 3,
0 <x < 1y(0) =2y(1)=1; useh= 0.1.

b.y" = —4x~1y' —2x72y + 2x % Inx,
1<x<2,y(1)=-05,y(2) =In2; use h = 0.05.
cy'=—(x+ Dy + 2y+ ({1 — xHe™%,

0<x<1y(0)=-1,y(1) =0; useh = 0.1.
dy"=x—1y +3x—-2y + x—1lnx-1,
1 <x<2,y(1) =y(2) =0 useh = 0.1.

4. Although g(x) < 0 in the following boundary-value problems, unique solutions
exist and are given. Use the Linear Shooting Algorithm to approximate the
solutions to the following problems, and compare the results to the actual solutions.
a.y'+y=0,0<x<n/4,y(0)=1,y(xl4)=1;useh=nr/20;

Actual solution ~ y(x) = cosx + (V2 — 1)sinx.
b.y"+4y=cosx,0 < x < n/4,y(0) = 0,y(r/4) = 0; useh = 1w/20;

Actual solution y(x) = —13 cos 2x — V26 sin 2x + 13 cos x.
c.y" =—4x"1y' + 2x7%y - 2x ?Inx,

y(1) = 1/2,y(2) = In2; useh = 0.05;

Actual solution y(x) = 4x™1— 2x72 + Inx — 3/2.

dy"'=2y"—y + xe* — x,0 < x < 2,
v(0) = 0,y(2) = —4; useh = 0.2;

Actual solution y(x) = 16 x3e* — 53 xe* + 2¢* — x — 2.

5. Use the Linear Shooting Algorithm to approximate the solution y = e~1%to the
boundary-value problem

y" = 100y, 0<x < 1y(0) = 1,y(1) = 710
Use h =0.1 and 0.05.

Finite-Difference Methods for Linear Problems

The linear and nonlinear Shooting methods for boundary-value problems can present
problems of instability. The methods in this section have better stability characteristics,
but they generally require more computation to obtain a specified accuracy. Methods
involving finite differences for solving boundary-value problems replace each of the
derivatives in the differential equation with an appropriate difference-quotient
approximation of the type considered in Section 4.1. The particular difference quotient
and step size h are chosen to maintain a specified order of truncation error. However,
h cannot be chosen too small because of the general instability of the derivative
approximations.

Discrete Approximation
The finite difference method for the linear second-order boundary-value problem,

y'=px)y + q(x)y + r(x),fora < x < b,withy(a) = ¢ and y(b) = B
(11.14)(8)
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Requires that difference-quotient approximations be used to approximate both y'and

y'"'. First, we select an integer N > 0 and divide the interval [a, b] into (N+1) equal

subintervals whose endpoints are the mesh points

x; =a+ih,fori = 0,1,...,N+1,whereh =(b—a)/(N +1).

Choosing the step size h in this manner facilitates the application of a matrix algorithm

from Chapter 6, which solves a linear system involving an N x N matrix. At the interior

mesh points, xi, fori = 1,2,..., N, the differential equation to be approximated is
V') = p()y' () + q)y(x) + r(x). (9(11.15)

Expanding y in a third Taylor polynomial about x; evaluated at x;,and x;_;, we have,

assuming thaty € C*[x;_1, X1 ],

! hz 14 3 n h4

y(xip1) =y(x; + h) = y(x) + hy'(x;) + ETR4 (x;) + ETRA (x;) + ﬁy@)(fﬂ)
2 h3 h4-

y(xi—1) =y(x; — h) = y(x;) — hy'(x;) + ?y”(xi) — 53""(9&) + ﬁy@)(f—i)

for some &,; in (x;,x;41), and for some &_;in (x;_q, x;). If these equations are added,
we have
h4
Y(rien) + y(xia) = 2y() + k2" 0a) + o2 [y ) +y P L)),

and solving for y"' (x;)) gives

7] 1 hz (4) (4)
y'(x;) = 2 [y(xit1) — 2y(x) + y(x;_1)] — 24 [3’ )ty (f—i)]-
The Intermediate Value Theorem can be used to simplify the error term to give

V') = S - 290) + ()l — Ly®E).  (10)(11.16)
for some &; in (x;_1,X;4+1)

This is called the centered-difference formula for y''(x;).
A centered-difference formula for y’(x;)is obtained in a similar manner (the details
were considered in Section 4.1), resulting in

) h?
Y () = = [yCin) — yCo)] = Sy@@my). (11)(11.17)
for some n; in (x;_4,x;,.1) The use of these centered-difference formulas in Eq. (9)
results in the equation

1
ﬁ[y(xm) — 2y(x) + y(x;-1)]

1
= PG (57 G — Y@ + aGyG) + ()

h
-5 (2p Gy @ ) +y 9 (@)

A Finite-Difference method with truncation error of order 0(h?) results by using this
equation together with the boundary conditions y(a) = a and y(b) = [ to define
the system of linear equations

Wo= Q,Wyny = f
and
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1
2h

1
nz [Wiv1 — 2w; +wiq] — p(x;) (

(12) (11.18)
foreachi = 1,2,...,N.
In the form we will consider, Eq. (12) is rewritten as
h h
— ((1 + ;P(xi)) wi_y + (2+h%q(x)) w; — ((1 - gp(xi)) Wi = —h%r(x;)
and the resulting system of equations is expressed in the tridiagonal N x N matrix form

Wies = wial) = 4G = 7Gx

Aw = Db, (13)

24 .Irf:{_li'I:_.TJ} -1+ gﬂi.1'| ) 0 S R D

h ) h
—1- F{?{.a‘:J 24 {rjff:i-l'z} -1+ 2—{’1-"2]'

‘ N —1+ =plxy_1)
D 0 ‘“"—l —gb[.r_a;}""-i—Irzf;(.r.w']

. h
- - —hr(x) + (] + ;,ﬂi.n‘])uﬂ:]
:l i

ws —.I!-F:.f'{.l'],'l
w= ., and b=
W -] —h*r(xn_1)

wy ~ h |
- —h=rixy) + (l — ;;?i-f,w'J]“’.*r'—l

Example 1
Consider N =9 to approximate the solution to the linear boundary-value problem

y'==2y +2y + 00 for1<x <2,withy(1) =1and y(2) = 2

and compare the results to exact solution

—0.03920701320 3 . l 1 l
2 10 sin(ln x) 10 cos(In x),

y = 1.1392070132.x +

Solution
For this example, we will use N=9,so0h =0.1
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Xi Wi y(x;) lw; — y(x)|
1.0 1.00000000 1.00000000

1.1 1.09260052 1.09262930 2.88 x 10°°
1.2 1.18704313 1.18708484 4.17 x10°°
1.3 1.28333687 1.28338236 4.55x10°
1.4 1.38140205 1.38144595 4.39x10°
1.5 1.48112026 1.48115942 3.92x10°
1.6 1.58235990 1.58239246 3.26 x10°°
1.7 1.68498902 1.68501396 2.49 x10°°
1.8 1.78888175 1.78889853 1.68 x 10°°
1.9 1.89392110 1.89392951 8.41x10°
2.0 2.00000000 2.00000000

Table (13)

These results are considerably less accurate than those obtained in Example 1. This is
because the method used in that example involved a Runge-Kutta technique with local
truncation error of order O(h*), whereas the difference method used here has local
truncation error of order O(h?). To obtain a difference method with greater accuracy,
we can proceed in a number of ways. Using fifth-order Taylor series for approximating
y" (x;) and y'(x;) results in a truncation error terminvolving h*. However, this process
requires using multiples not only of y(x;,,) and y(x;_;), but also of y(x;,,) and
y(x;_,) in the approximation formulas for y"'(x;) and y'(x;). This leads to difficulty
at i =0, because we do not know w_,, and ati = N, because we do not know wy, .
Moreover, the resulting system of equations analogous to (13) is not in tridiagonal
form, and the solution to the system requires many more calculations.

EXERCISE SET 11.3
1. The boundary-value problem
y'=4y — x),0< x<1,y(0)=0,y(1) =2
has the solution y(x) = e?(e*— 1)"1(e?* — e™?*) + x. Use the Linear
Finite-Difference method to approximate the solution, and compare the results to
the actual solution.
a. Withh=0.5
b. With h =0.25
c. Use extrapolation to approximate y(1/2).
2. The boundary-value problem
y'=9y"+ 2y + cosx,0<x< n/2,y(0) =-0.3,y(/2) = —0.1
has the solution y(x) = —1/10 (sinx + 3 cos x). Use the Linear Finite-
Difference method to approximate the solution, and compare the results to the
actual solution.
a. Withh =z/4 ; b. Withh =z/8 .
c. Use extrapolation to approximate y(rt/4).
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3. Use the Linear Finite-Difference Algorithm to approximate the solution to the
following boundary value problems.

ay'’'= -3y +2y+2x+3, 0<x<1,y(0)=2,y(1)=1;useh= 0.1.
b.y" = —4x~1y' 4+ 2x7%2y - 2x7?Inx, 1< x < 2,

y(1) = =12,y(2) = In2; useh = 0.05.
c.y’'=-(x+ 1y +2y + (1-x*e™ 0<x <1,

y(0) = —1,y(1) = 0; useh = 0.1.
dy"=x"1y'+ 3x 2%y +xtlnx- 1,1 < x < 2,
y(1) = y(2) = 0; useh = 0.1.

4. Although g(x) < 0 in the following boundary-value problems, unique solutions
exist and are given. Use the Linear Finite-Difference Algorithm to approximate the
solutions, and compare the results to the actual solutions.

e. y'+y=0,0<x<zn/4,y(0)=1,y(n/4)=1;useh=n/20;
actual solution  y(x) = cosx + (\/2 — 1)Sin X.
f. y'+4y=cosx,0 < x < n/4,y(0) = 0,y(n/4) = 0; useh = w/20;
actual solution  y(x) = —13 cos 2x — V26 sin 2x + 13 cos x.
g. vy =—4x"1y' + 2x7%y - 2x"%Inx,
y(1) = 1/2,y(2) = In2; useh = 0.05;
actual solution  y(x) = 4x1— 2x72 + Inx — 3/2.
h. y"=2y"—y + xe* — x,0 < x < 2,
y(0) = 0,y(2) = —4; useh = 0.2;
actual solution y(x) = 16 x3e* — 53 xe* + 2e*— x — 2.
5. Use the Linear Finite-Difference Algorithm to approximate the solution y = e~19%
to the boundary value problem
y'=100y,0< x < 1,y(0) = 1,y(1) = e71°
Use h = 0.1 and 0.05. Can you explain the consequences?
6. Repeat Exercise 3(a) and (b) using the extrapolation discussed in Example 2.

The Rayleigh-Ritz Method

The Shooting method for approximating the solution to a boundary-value problem
replaced the boundary-value problem with pair of initial-value problems. The finite-
difference approach replaces the continuous operation of differentiation with the
discrete operation of finite differences. The Rayleigh-Ritz method is a variational
technique that attacks the problem from a third approach. The boundary-value problem
is first reformulated as a problem of choosing, from the set of all sufficiently
differentiable functions satisfying the boundary conditions, the function to minimize a
certain integral. Then the set of feasible functions is reduced in size, and an
approximation is found from this set to minimize the integral. This gives our
approximation to the solution of the boundary-value problem. To describe the
Rayleigh-Ritz method, we consider approximating the solution to a linear two-point
boundary-value problem from beam-stress analysis. This boundary-value problem is
described by the differential equation

— LG+ Ay = fFfr0 S x <1, (14) (112D)
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with the boundary conditions

y(0) = y(1) = 0. (15)(11.22)
This differential equation describes the deflection y(x) of a beam of length 1 with
variable cross section represented by g(x). The deflection is due to the added stresses
p(x) and f(x).
More general boundary conditions are considered in Exercises 6 and 9.
In the discussion that follows, we assume that p € C'[0,1] and q,f € C[0,1].
Further, we assume that there exists a constant ¢ > 0 such that
p(x) = &,andthat g(x) = 0, for each xin [0, 1].
These assumptions are sufficient to guarantee that the boundary-value problem given
in (14) and (15) has a unique solution (see [BSW]).

Variational Problems
As is the case in many boundary-value problems that describe physical phenomena,
the solution to the beam equation satisfies an integral minimization variational
property. The variational principle for the beam equation is fundamental to the
development of the Rayleigh-Ritz method and characterizes the solution to the beam
equation as the function that minimizes an integral over all functions in €2[0, 1], the
set of those functions u in C2[0, 1] with the property that u(0) = u(1) = 0. The
following theorem gives the characterization.
Theorem (2)
Letp € C'[0,1],q,f € C[0,1],and

p(x) =28 > 0,q(x) = 0,for0 < x < 1.
The function y € CZ[0, 1] is the unique solution to the differential equation

- @)Y+ q@)y = f (x),for0 < x < 1, (16)
if and only if y is the unique function in CZ[0, 1] that minimizes the integral
1
I[u] = j PO () + q()u)]® = 2f (Cu)}dx.  (17)
0

Details of the proof of this theorem can be found in [Shul], pp. 88-89. It proceeds in
three steps.

«First it is shown that any solution y to (16) also satisfies the equation
1 1
f f (Du@dx = j P () + q@y@u®dx,  (18)
0 0
for all u e C4[0,1].

* The second step shows that y € 63[0,1] is a solution to (17) if and only if (18)

holds for all & € CZ[0,1].

» The final step shows that (18) has a unique solution. This unique solution will also be
a solution to (16) and to (17), so the solutions to (16) and (17) are identical.
The Rayleigh-Ritz method approximates the solution y by minimizing the integral, not

over all the functions in 65[0,1] , but over a smaller set of functions consisting of
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linear combinations of certain basis functions¢q,¢,,...,¢, . The basis functions are

linearly independent and satisfy
@;(0)=¢;(1)= 0 ,foreachi = 1,2,...,n.

n

An approximation ¢(x)= > c;@;(x) to the solution y(x) of Eqg. (16) is then
i=1

obtained by finding constants cq,c,,. . .,c, to minimize the integral

()] = I[X, cipil

From Eq. (17),
Ho()] = I[Xi, ci¢i] (19)
= fol{’P(X)[ i1 ¢ 1% + g [Xi cipil® — 2f () iy cipddx

and, for a minimum to occur, it is necessary, when considering | as a function of
€1,C,. . .,C,t0 have

ﬁ: 0,foreachj = 1,2,...,n. (20)
8c]-

Differentiating (19) gives

a

aCj

1 n n
| {zmx)Z 9’ (G900 +24(0) ) aice) P — 2f<x)<p,-(x>}dx
0 i=1 i=1
foreachj = 1,2,...,n.

and substituting into Eq. (20) yields

n 1 1
' [ [ e mae,@ +q(x)<pi<x><p,-<x)}ci] dx— [ Fe0,0dx =0
i=1 0 0

(21)(11.28)

foreachj = 1,2,...,n.

The normal equations described in Eg. (21) produce an nxn linear system Ac = b
in the variables cy,c;,. . .,c,, where the symmetric matrix A has

1
ajj ={ p(X)@;(xX)p;(x) +q(x)g, ()@ (x) dx

and b is defined by

1
bi=[f (X)goj_ (x)dx
0
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Piecewise-Linear Basis
The simplest choice of basis functions involves piecewise-linear polynomials. The first
step is to form a partition of [0, 1] by choosing points XO,Xl, . X, 1 With

0=xp<x1<..<x,<x,.,=1 Lettingh; =x;,1— for each/7=0, 1,..
we define the basis functions ¢ (x),¢,(x),. . .,@,(x) by

(0 if 0<x<x;_4,

(x—x;-1)

— T~ ifx_ <x<x,
hi—y

(=) (22)
" if x; <x<x54q,
l

\ 0 if x4 <x<1
foreachi = 1,2,...,n

p(x) =1

The functions ¢,(x) are piecewise-linear, so the derivatives ¢';(x) , while not
continuous, are constanton (x;,x;,4), foreachj = 0,1,...,n, and

(0 if 0<x<x;_4,
1
n if Xi_1 <x< X,
o' (=1, (23)
" if x; <x < x54q,
i
\ 0 if x4 <x<1.

foreachi = 1,2,...,n
Because ¢;(x) and ¢';(x)are nonzero only on (x;,x,1), ¢;(x)@;(x)=0 and

@'i(x)p';(x)=0 ,exceptwhenjisi — 1,i,0ri + 1. Asa consequence, the linear

system given by (21) reduces to an n X n tridiagonal linear system. The nonzero
entries in A are

f (pee @] + @] d
1

1 2 X4
p(x)dx+ h)J p(x)dx
l Xi
2

=iN
o 1) jx (x —x;-1)? q(x)dx + (;L) f:iﬂ(xiﬂ —x)? q(x)dx

foreachi = 1,2,...,n;
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Aiir1 = fo 1{29(96)90’i(9C)<p’l-+1(96) + q(0)@; () P41 (x) }dx
_ (;1_11)2 jx Q'Ciﬂp(x)dx + (hl)z

foreachi = 1,2,...,n—1;

j " (e — 0 (& —x)q () dx

1
Qi1 = f P’ (', () + q(x)p; () p;_1 (x) }dx
0

B (h_l) f plr)dx (hl ) f <x — %) (x = x1-1)q () dx

foreachi = 2,...,n;

b = fo Fpdx
- () j (x — %) f () dx + (i) j (e — 0 (dx

hi—l hi

i
foreachi = 1,2,...,n;

There are six types of integrals to be evaluated:
1 2 rXiyq
@i = () [ G =0 x) qGdx,
l Xi
foreachi = 1,2,...,n — 1,

Q2 = (hil_l)z _[:_L (x — x;_1)? q(x)dx,

foreachi = 1,2,...,n,

0 = (1) [ G =207 ay ax,

i

foreachi = 1,2,...,n,

Qs = (hil_l) in p(x) dx,

i-1
foreachi = 1,2,...,n+ 1,

1 [ .
el o n e d

Qs,i =

foreachi = 1,2,...,n1,
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And
1 Xi+1
Gt =7 | G =0 f @) dx
l Xi

foreachi = 1,2,...,n,
The matrix A and the vector b in the linear system Ac = b have the entries

;; = Q4q; + Quit1 + Q2; + Q3;, foreachi = 1,2,...,n,

Ajiv1 = —Q4i+1 + Qi foreachi =1,2,...,n — 1,
i1 = —Qu; + Qri-1, foreachi = 2,3,...,n,
and
b; = Qs; + Qs foreachi = 1,2,...,n.
The entries in ¢ are the unknown coefficients c,, c,, ..., ¢,, from which the Rayleigh-
Ritz approximation ¢, given by ¢ (x) = X, c;9;(x), is constructed.

To employ this method requires evaluating 6n integrals, which can be evaluated
either directly or by a quadrature formula such as Composite Simpson’s rule.

An alternative approach for the integral evaluation is to approximate each of the
functions p, g, and f with its piecewise-linear interpolating polynomial and then
integrate the approximation. Consider, for example, the integral @, ;. The piecewise-
linear interpolation of q is

n+1
() =) aG)ei),
i=0
where ¢4,..., ¢@,, are defined in (11.30) and

(x—x¢)

oy 0<x<x O<x=<ux
Po =71 %1 and @piq =1 x
0 otherwise 0 otherwise

The interval of integration is [x;, x;,4], SO the piecewise polynomial P, (x) reduces to
Py(x) = q(xp)@i(x) + q(xip1)@i1().
lg(x) — Pq(x)| = O(h2i), for x; < x < x;4q,
ifqg € C*[x;,x;41]- Fori = 1,2,...,n — 1, the approximation to Q ; is obtained by
integrating the approximation to the integrand

0u=(2) [ G =0 =) arax

hi
= (hl> fxm(xi“ —0)(x —x;) q(xi)o;?l mLIA q(le)h(.x — x|
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h;
=17 [q(x;) + q(x;41)]

Further, if ¢ € C?[x;, x;,,]then
h:
Qui — ﬁ [q(x) + q(xi ]| = O(RY)

Approximations to the other integrals are derived in a similar manner and are given

by
hi—4

Q = 12
h;

Qs; = ——[3q(x;) +q(x;i1)],

1
Qs; =

hi_q
Qs =

[3q(x;) + q(x;—1)],

[\

[p(x;) + p(x;-1)],

[2f (x;) + f(xi-1)],

2
hi_q

and

= o

Qe = —[2f(x;) + f(xir1)]].

i
6
Ilustration
Consider the boundary-value problem

—y"" + w?y = 2n?sin(mx),for 0 < x < 1,withy(0) = y(1) = 0.
Leth, = h = 0.1,sothatx; = 0.1i, foreachi = 0,1,...,9.
The integrals are

0.1i+0.1 2

s
Q1 = 100] (0.1i + 0.1 — x)(x— 0.1))m? dx = —,
0.1i 60

0.1i 2

Q2,i = 100] (x — 0.1i + 0.1)%w% dx = —
0.1i-0.1

0.1i+0.1 2
Q3,i = 100] (0.1i + 0.1 — x)27%dx = —
0.1i
0.1

Q4,1 = 100f dx = 10,
0.1i—0.1

0.1i+0.1
Q5,i = 10.[ (x — 0.1i + 0.1) 272 sinmx dx
0.1i-0.1

= —2mcos0.1mwi + 20[sin(0.1mi) — sin(0.1i — 0.1)m)],

and
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0.1i+0.1

Q6,i = 10f (0.1i + 0.1 — x) 2m?sinmx dx

0.1i
= 21 cos 0.1mi — 20[sin((0.1i + 0.1)m) — sin(0.1mi)].

The linear system Ac = b has

2

T
a;; = 20 + 1—5,foreachi =12,...,9

2

T

aji+1 = —10 + @,foreachi =12,...,8,
2

aji—, = —10 + &,foreachi =23,...,9,

And

b; = 40sin(0.1wi)[1 — cos0.1x |,foreachi = 1,2,...,9.

The solution to the tridiagonal linear system is
co = 0.3102866742,c4 = 0.5902003271,c;, = 0.8123410598,
ce = 0.9549641893,cs = 1.004108771,c, = 0.9549641893,
c; = 0.8123410598,c, = 0.5902003271,c; = 0.3102866742.

The piecewise-linear approximation is
9

p@) = ) api),
i=1
and the actual solution to the boundary-value problem is y(x) = sin zx. Table (14) lists
the error in the approximation at xi, for eachi = 1,...,9.

i Xi o (x;) y(x;) lo(x;) — y(x)]
1 0.1 0.3102866742 0.3090169943 0.00127
2 0.2 05902003271 0.5877852522 0.00241
3 0.3 0.8123410598 0.8090169943 0.00332
4 0.4 0.9549641896 0.9510565162 0.00390
5 05 1.0041087710 1.0000000000 0.00411
6 0.6 0.9549641893 0.9510565162 0.00390
7 0.7 0.8123410598 0.8090169943 0.00332
8 0.8 0.5902003271 0.5877852522 0.00241
9 0.9 0.3102866742 0.3090169943 0.00127

Table (14)

It can be showing that the tridiagonal matrix A given by the pricewise linear basis
functions is positive definite, so, the linear system is stable with respect to round off
error. Under the hypotheses presented at the beginning of this section, we have

lp(x) — y(x)| = 0(h?), for each xin [0, 1].
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B-Spline Basis

The use of piecewise-linear basis functions results in an approximate solution to Eqgs.
(14) and (16) that is continuous but not differentiable on [0, 1]. A more sophisticated
set of basis functions is required to construct an approximation that belongs to CZ[0, 1].
These basis functions are similar to the cubic interpolatory splines . Recall that the
cubic interpolatory spline S on the five nodes x,, x;, x5, x3, and x, for a function f is
defined by:

(a) S(x) is a cubic polynomial, denoted S;(x), on the subinterval [x;, x;,] for each
Jj =0123;
(b) S](X]) = f (X]) and S](x]+1) = f (Xj+1) for eaChj = O, 1, 2, 3;

(©) Sj+1(xj+1) = Sj(Xj4+1) foreachj =0,1,2;

(d) S"j41(xj41) = S5 (X41) foreachj = 0,1,2;

(€) S"j41(xj41) = S"(xj41) foreachj = 0,1,2;

() One of the following sets of boundary conditions is satisfied:

() S"(xy) = §"(x,)) = 0 (Natural (or free) boundary);

(i) S'(xg) = f'(xg) and S'(x,) = f'(x) (Clamped boundary).

Since uniqueness of solution requires the number of constants in (a), 16, to equal the
number of conditions in (b) through (f), only one of the boundary conditions in (f) can
be specified for the interpolatory cubic splines.
The cubic spline functions we will use for our basis functions are called B-splines, or
bell-shaped splines. These differ from interpolatory splines in that both sets of
boundary conditions in (f) are satisfied. This requires the relaxation of two of the
conditions in (b) through (e). Since the spline must have two continuous derivatives on
[xo, x4], we delete two of the interpolation conditions from the description of the
interpolatory splines. In particular, we modify condition (b) to b. S(x;) = f (x;) for
j =024
For example, the basic B-spline S defined next and shown in Figure 11.5 uses the
equally spaced nodes
Xo=—-2,x,=—1,%x,=0,x3=1,and x, = 2

It satisfies the interpolatory conditions b. S(x,) = 0,5(x,) = 1,5(x,) = 0;aswell
as both sets of conditions

i) S"(xy) = S"(x4) = 0and

(i) S'(xp) = S'(x,) = 0.
As a consequence, S € Cg(—oo, ), and is given specifically as

—2 -1 1 2

[
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( 0 if x< =2

~(2+x)° if —2<x<-1
IR+ x)3-41+x)3] if —1<x<0
S =1 13 (25)
J[2-x)°-401-0% if 0<x<1
22— ) if 1<x<2
\ 0 if 2<x

We will now use this basic B-spline to construct the basis functions ¢; in CZ[0, 1].
We first partition [0, 1] by choosing a positive integer n and defining
h = 1/(n + 1). This produces the equally-spaced nodes
x; = th,foreachi = 0,1,...,n+ 1.
We then define the basis functions {¢; }**; as

+h
rS(%)—ALS(xh ) if i =0
x—h x+h o
S( A )—S( " ) ifi=1
x —ih _ ,
<Pi=<S( - ) if2<is<n-1
X —nh x—(n+2)h o
S( . )—S A ifi=n
—(n+1)h —(n+2)h
s(Em ) (x=rny

It is not difficult to show that {¢; }1*;' is a linearly independent set of cubic splines
satisfying

p; (0) =¢; (1) = 0,foreachi = 0,1,...,n,n + 1
The graphsof  ¢;,for2 < i < n — 1, are shown in Figure 11.6, and the graphs
of o, ¥1, 0, ,and ¢, ., are in Figure 11.7.
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Sinceg;(x) ande’;(x) are nonzero only for x € [x;_,, x;4,], the matrix in the
Rayleigh-Ritz approximation is a band matrix with bandwidth at most seven:

dop  dol dox o3 Desverereiniiin 0
g G Gz @3 4y - :
dzp ) ] rz g a5
@ag @3, A3z diy g das, a3
A= 0. . BRI 0
: --'ﬂr.'—:..ll—J
---".__---'ﬂr.'—h'l—]
.. . . .. _---'ff:r.:r+l
L Dﬂ -'f}r.'—l..ll—l---ﬂﬁ+1.r.'—-l--ﬂr.'—l..ll--ﬂr.'—l..ll—J i

(26)
where

a,; = j (P9’ (D¢, (00 + aW e )p; (0} dx,

foreachi,j = 0,1,...,n + 1. The vector b has the entries

b = j f (i) dx.
0

The matrix A is positive definite, so the linear system Ac = b can be solved by
Cholesky’s Algorithm or by Gaussian elimination.

Illustration
Consider the boundary-value problem
—y" + m?y = 2n? sin(nx),for 0 < x < 1,withy(0) = y(1) = 0.
we let h = 0.1 and generated approximations using piecewise-linear basis functions.
Table (15) lists the results obtained by applying the B-splines
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i Ci X P (x;) y(x;) ly(xi) — @(x;)]
0 0.50964361x 10° 0.0  0.00000000 0.00000000  0.00000000
1 0.20942608 0.1 0.30901644 0.30901699  0.00000055
2 0.39835678 0.2 0.58778549 0.58778525  0.00000024
3 0.54828946 0.3 0.80901687 0.80901699 0.00000012
4 0.64455358 0.4 0.95105667 0.95105652 0.00000015
5 0.67772340 0.5 1.00000002 1.00000000 0.00000020
6 0.64455370 0.6 0.95105713 0.95105652  0.00000061
7 0.54828951 0.7 0.80901773 0.80901699  0.00000074
8 0.39835730 0.8 0.58778690 0.58778525 0.00000165
9 0.20942593 0.9 0.30901810 0.30901699  0.00000111
10 0.74931285x 10° 1.0  0.00000000 0.00000000  0.00000000
Table (15)

We recommend that the integrations in Steps 6 and 9 be performed in two steps. First,
Construct cubic spline interpolatory polynomials for p, g, and f using the methods
presented in Section 3.5. Then approximate the integrands by products of cubic splines
or derivatives of cubic splines. The integrands are now piecewise polynomials and can
be integrated exactly on each subinterval, and then summed. This leads to accurate
approximations of the integrals.

The hypotheses assumed at the beginning of this section are sufficient to guarantee that

1 1/2
{f ly(x) — @(x)|? dx} = 0(hY),if0< x < 1.
0

Another popular technique for solving boundary-value problems is the method of
collocation. The word collocation has its root in the Latin “co-"" and “locus “indicating
together with and place. It is equivalent to what we call interpolation.

This procedure begins by selecting a set of basis functions {¢4,..., @y}, a set of
numbers {x;,...,x,} in [0, 1], and requiring that an approximation YN, ¢; ¢; (x)
satisfy the differential equation at each of the numbers x; , for 1 <i <n. If, in addition,
it is required that ¢;(0) = ¢;(1) = 0, for 1 < i < N, then the boundary conditions
are automatically satisfied. Much attention in the literature has been given to the choice
of the numbers {x;} and the basis functions{¢;}. One popular choice is to let the ¢; be
the basis functions for spline functions relative to a partition of [0, 1], and to let the
nodes {x;} be the Gaussian points or roots of certain orthogonal polynomials,
transformed to the proper subinterval.

|Page82



EXERCISE SET 11.5
1. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-
value problem

2 2 X

" e = — —_— < < = =
v+ 4y e cos4,0_x < 1,y(0) y(1) 0

usingx, = 0, x; = 0.3, x, = 0.7, x3 = 1. Compare your results to the actual
. 1 V2o, 1
solutiony(x) = —= cos= x —— sin—x + - cos= x.
3 2 6 2 3 4

2. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-
value problem
— S (xy)+4y = 4x2— 8x + 1,0 < x < L,y(0) =y(1) =0
usingx, = 0, x; = 0.4, x, = 0.8, x3 = 1. Compare your results to the actual
solution y(x) = x% — «x.
3. Use the Piecewise Linear Algorithm to approximate the solutions to the following
boundary-value problems, and compare the results to the actual solution:
a. —x%y"— 2xy' + 2y = —4x%,0 < x < 1,y(0) = y(1) = 0;
use h = 0.1; actual solution y(x) = x% — «x.
b. —(x + Dy"—y' + (x + 2)y = [2 — (x + 1)?]eln2 — 2¢7%,
0< x < 1,y(0) = y(1) = 0;use h=0.05;
actual solution y(x) = e* In(x + 1) — (eln2)x.
4. Use the Cubic Spline Algorithm with n = 3 to approximate the solution to each of
the following boundary-value problems, and compare the results to the actual
solutions given in Exercises 1 and 2:

2 2
a. y'+ ”Ty = % cos%,OS x < Ly0O) =y(1) =20
b.—j_x(xy’) +4y =4x2 —8x + 1,0 < x < L,y(0) = 0,y(1) = 0

5. Show that the boundary-value problem

d
— @YY +at)y = f(),0=< x < Ly(0) = a,y(1) = B,
can be transformed by the change of variable
z =y — Bx — (1 — x)a into the form

— %(p(x)z') + q(x)z = F(x),0< x < 1,z(0) = 0,z(1) = 0.

6. Use Exercise 6 and the Piecewise Linear Algorithm with n = 9 to approximate the
solution to the boundary-value problem
"+ y=x0<x < 1y0) =1yl =1+ e L.

Reference
[1] Richard L. Burden & J. Douglas Faires,"Numerical Analysis",9" edition,(2011).
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